
TrafficDB: HERE’s
High Performance

Shared-Memory Data
Store

Ricardo Fernandes, Piotr Zaczkowski, Bernd Göttler, Conor Ettinoffe, and Anis Moussa

Christos Hadjistyllis
Marios Michael

EPL646: Advanced Topics in Databases

https://www.cs.ucy.ac.cy/courses/EPL646

TrafficDB - Introduction

● In-memory key-value store able to process millions of reads per second

● Supports geospatial features

● Optimised to scale on modern multi-core architectures

● A single common database shared by HERE’s all traffic-related services

2

https://www.cs.ucy.ac.cy/courses/EPL646

Introduction - HERE

● Provides accurate traffic information & advanced route planning and navigation

services

● Processes billions of GPS data points across the globe

○ from smartphones, PNDs (Personal Navigation Devices), road sensors and connected

cars

● Data used for generating
○ real-time and predictive traffic information for 58 countries

○ historical speed patterns for 82 countries

● DB contains 200 million navigable road segments

● Millions of users world-wide

3

https://www.cs.ucy.ac.cy/courses/EPL646

Related Work

● Main-memory databases exist since 1990s, but only used for caching to optimise

disk based access

● Oracle TimesTen, VoltDB, SQLite (supports in-memory storage), Redis and

Aerospike

● Not sufficient to handle the large volume of queries of HERE’s route planning

applications

4

https://www.cs.ucy.ac.cy/courses/EPL646

Motivation

● Routing and navigation services rely on real-time traffic data thus require access to

the freshest traffic information

● Main idea is to have a repository as a central database cluster shared between all

services without latency of network I/O

● For this reason, an in-memory storage solution is the only option
○ data will be accessible by CPUs with direct access and minimum latency

5

https://www.cs.ucy.ac.cy/courses/EPL646

Motivation - HERE’s Services

● Tile Rendering Service
○ Traffic data rendered into image tiles as data changes and served to

clients via web-based maps
○ CPU and memory consuming
○ Runs on Rendering Servers running many Rendering Processes

● Traffic Data Service
○ Provides traffic information in different output formats, such as

JSON, XML etc.
○ Spatial indexing used for fast retrieval of data for requested area
○ Need for fast access time to traffic data and high throughput

● Routing Service
○ Give route for A to B by calculating best path
○ Must be aware of accidents, congestion and weather conditions
○ During the execution of a routing algorithm, the traffic conditions

for a given road segment must be efficiently retrieved

6

https://www.cs.ucy.ac.cy/courses/EPL646

Motivation - Data Store Requirements

● High-Frequency Reading

● Low-Frequency Writing

● Low-Latency Read Operations

● Compacted Memory Usage

● Consistent Data

● Resilience

● Scalability

7

● Direct Data Access, No Query

Language

● No persistence

● Geospatial Features and

Indexing

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Tile Rendering Servers

● Instances lie behind an HTTP front-end that distributes

requests across a group of rendering processes

● Rendering processes are a type of TrafficDB application

processes

● Application processes are directly “connected” to the data

store

○ Potential bottleneck if central database process

would be used for access to data store

■ Passing response messages would be a

considerable overhead

8

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Shared Memory Storage
Overview

● Data are stored in a shared region

of RAM that can be efficiently

accessed by different types of

application processes

● Uses POSIX API which allows

processes to communicate by

sharing a region of RAM

9

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Daemon Process (1)

● Daemon: core of TrafficDB, background process responsible

 for managing the shared memory region
○ creating, updating and deleting the entire data store
○ connected to an external service that injects new traffic content
○ the only process allowed to update the datastore

● Employs Producer (daemon) – Consumer (application processes) approach
○ APs lock data store for reading to perform queries
○ Daemon needs to wait to gain write access to prevent inconsistency

● But, to avoid starvation and performance degradation (lock contention) of above

approach, Traffic DB uses a double buffering scheme

10

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Daemon Process (2)

● Daemon allocates header segment

○ Holds metadata: capacity and size of data structures

plus static traffic information (e.g. street geometry)

● Also creates Traffic Object: shared object containing current traffic conditions

○ Dynamic traffic content that changes along real-time traffic conditions

○ Utilizes Linux kernel's Shared Memory Object Management for automatic

management of object’s lifetime

11

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - DB Initialization +
Management of Objects

● When the daemon starts for the first time the database is

empty

● Daemon creates the header segment, internal data structures

and loads static data from DB settings

● Then enters an internal loop, waiting for traffic data updates

● When new traffic data is available

○ A new Traffic Object is created and updated

○ Daemon updates the active object field in the header

metadata with the address of the new object

○ Object is now published and APs can read it

○ The old object is marked to be destroyed

12

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Objects Management

13

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Clients

● Each client (application process) retrieving traffic

information reads header in order to obtain ID of

current active object

● To avoid bad performance and consistency issues

(e.g. reading old data), locking is used on the active

object (field inside header)

● Linux Shared Memory Object: automatically

destroyed when all processes stop using it (after

marked for deletion)

14

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture -Availability, Fault Tolerance
and Scalability

● After the database is initialized by the daemon, availability is ensured by the kernel

● If the daemon is stopped, objects still remain in memory and can be accessed by clients

● If a client crashes, the kernel automatically closes all connections and detaches from all

Shared Memory Objects

● Clients keeping locks indefinitely (e.g. by executing very long operations) are handled by

“the monitoring” which checks the behaviour of client processes

● On unexpected failure:
○ “the monitoring” restarts the daemon
○ checks the consistency of the header and objects
○ if any issues detected, it will automatically destroy corrupted objects and continue normal

operation

● Scalability: vertical (more resources) and horizontal (more machines) scalability

supported

15

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Shared Memory Data
Structures

16

https://www.cs.ucy.ac.cy/courses/EPL646

SMDS - Key-Value Store

● Fast access to locations and traffic data

● Includes hash table where each entry points to a bucket within a linked-list:

○ Buckets include

■ pointers to respective Location Info and Traffic Data sections

■ key and pointer of next bucket

■ common data to all locations (bounding box, location type etc)

○ Key is a unique identifier given to each location in road network

○ Hash function optimised to distribute values uniformly and reduce the size of

chaining buckets

● Also includes a spatial index data-structure

17

https://www.cs.ucy.ac.cy/courses/EPL646

SMDS - Geospatial Index

● Uses an R-Tree data-structure optimised for

storage in contiguous shared-memory regions

● Each index node contains

○ its minimum bounding rectangle

○ a set of pointers to other child nodes

● The leaf nodes contain pointers to the locations present in the buckets

● To maintain a balanced tree (for performance) index is constructed just before

publishing objects

○ Daemon traverses hash table, sorts the data and does bulk insertion to create

a well balanced tree

18

Cyprus

Nicosia District

Strovolos

https://www.cs.ucy.ac.cy/courses/EPL646

SMDS - Location Info & Traffic Data Sections

● Traffic Data section

○ Blob (binary data) of traffic content per location

○ Contains information such as real-time congestion, incidents and predictions

for each road segment

● The Location Info section

○ Also a Blob, contains the shape coordinates and other location attributes

19

https://www.cs.ucy.ac.cy/courses/EPL646

Architecture - Client APIs

● TrafficDB does not offer a query language

● Provides a rich C++ API to directly access

the data in memory instead

● API offers read-only methods

○ to connect to DB

○ lock and unlock objects

○ perform spatial queries

○ retrieve locations by key

● They also provide bindings for the Python

20

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation

● Three main metrics
○ Throughput : Number of operations the database can process within a given period of time
○ Latency: Is the time it takes for an operation to complete
○ Vertical Scalability: ratio of throughput increase while maintaining latency when scaling

● Read Operations Evaluation
○ Performance of main operations

■ locking, get-value queries and spatial queries
○ TrafficDB C++ client API used to measure performance of read operations
○ OpenMP (parallel programming library) used to launch clients in parallel
○ Database with a real snapshot of the traffic content used

■ contains information and events for 40 million road segments world-wide
■ requiring 5GB of RAM for storage

● Equipment
○ Intel Xeon ES-1650 v2 3.5GHz machine with 6 cores (12 threads) , 16 GB of RAM

21

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Read Operations

● Key Value Queries

○ Measure GET operations

○ For fair evaluation, they tested all the possible keys by querying all locations

in a random order to reproduce random behavior and bypass CPU caching

● Spatial Queries

○ To accurately measure the average throughput and latency of queries they

queried locations in different regions of the map

○ In this experiment they split the world map into a grid of tiles, where each tile

has an N ∗ N size

22

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Throughput

● GET operations: linear

increase in throughput

with increase of clients

● Spatial Queries: still linear

but not in the same degree

23

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Latency
● Latency remains

relatively constant while

clients increase

● This means that

TrafficDB scales well

under load

24

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - TrafficDB vs Redis
● Redis is an in-memory

data store with

reputable performance

● Experiment shows that

Redis (and other data

stores) cannot scale

like TrafficDB
○ Redis serves 130k

operations per
second

○ TrafficDB serves
20m operations per
second

25

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Attaching/Locking Traffic Objects

● As mentioned before,
application processes
need to lock objects when

reading for consistency

● Experiment: as many locks
as possible per second

● Result: latency increases
due to this practise

● To minimize this,
processes should perform
as many reads as possible
when given lock to the
Traffic Object

26

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Scalability of Read Operations

● N(P): Number of operations
executed by P processors

● T(P): Execution time taken
by using P processors

● GET and spatial operations

scale well

● Locking, on the other hand
proves to be a limitation for
TrafficDB scalability

27

https://www.cs.ucy.ac.cy/courses/EPL646

Evaluation - Write Operations

● As mentioned before, writes performed by Daemon process only

● The performance of insert and update operations affects the time required to create and

update new Objects

● According to results below:

○ 14 seconds to publish a new Traffic Object with 40 million locations

○ 5 seconds only to update existing Traffic Object

28

https://www.cs.ucy.ac.cy/courses/EPL646

TrafficDB In Production

● TrafficDB is becoming the main in-memory storage for the traffic-aware services

available in the HERE location cloud

● They use TrafficDB for Tile Rendering Servers
○ Shared-memory storage allows them to run 30 rendering processes on 32 CPUs on one machine
○ Can now process 60% more requests

● They also use TrafficDB for Routing Servers
○ Route calculations are on average 55% faster than previous versions of TrafficDB

29

https://www.cs.ucy.ac.cy/courses/EPL646

Conclusions

● Described the main motivation of designing a new database system to meet the strong

performance requirements of HERE’s traffic-aware services

● Introduced TrafficDB, a shared memory key-value store optimised for traffic data

storage, high frequency reading, with geospatial features

● Evaluated performance in terms of throughput, latency and scalability, showing that
○ Traffic DB is able to process millions of reads per second
○ Scales in a near-linear manner on modern multi-core systems without noticeable increase in

latency of read operations

30

https://www.cs.ucy.ac.cy/courses/EPL646

● TrafficDB: HERE's high performance shared-memory data
store Ricardo Fernandes, Piotr Zaczkowski, Bernd Göttler,
Conor Ettinoffe, and Anis Moussa. 2016. Proc. VLDB Endow.
9, 13 (September 2016), 1365-1376
DOI: http://dx.doi.org/10.14778/3007263.3007274

Thank you for your attention!

31

References

http://dx.doi.org/10.14778/3007263.3007274

