

Not ACID, not BASE, but SALT

A Transaction Processing Perspective on Blockchains

Authors: Stefan Tai, Jacob Eberhardt and Markus Klems Presentation by: Georgiou Zacharias and Paschalides Demetris

Overview

- 1. Blockchain Definition
- 2. Transaction and System Perspectives
 - 2.1. ACID Transaction Perspective
 - 2.2. BASE System Perspective
- 3. Introduction to SALT
 - 3.1. SALT Transaction Perspective
 - 3.2. SALT System Perspective
- 4. SALT, ACID and BASE Comparison
- 5. SALTy Use Cases
 - 5.1. Monegraph
 - 5.2. Provenance
- 6. Challenges

Blockchain Definition

The blockchain developers and technology view

"A blockchain is a peer-to-peer protocol for **trustless** execution and recording of transactions secured by asymmetric cryptography in a consistent and immutable chain of blocks."

The IT architect and data management view

"A blockchain is a shared append-only distributed database with full replication and a cryptographic transaction permissioning model."

The business executive and applications view

"A blockchain is a shared decentralized ledger, enabling business disintermediation and trustless interactions, thereby lowering transaction costs."

Transaction and System Perspectives

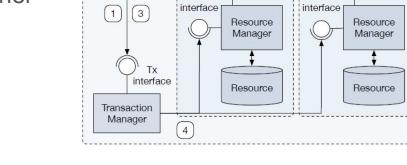
Comparing Blockchain-based transactions with ACID transactions and BASE model

- **Transaction Perspective**
 - **ACID** transactions supported by Relational Database Management Systems
 - □ SALT: Sequential, Agreed, Ledgered and Tamper-resistant

System Perspective

- **BASE** model, favored by cloud systems and NoSQL data stores
- **SALT: Symmetric, Admin-free, Ledgered and Time-consensual**

Transaction Perspective - ACID^[1]


Atomicity, Consistency, Isolation and Durability

- Transactions executed as a whole or not at all
- Each transaction transforms the database from one consistent, valid state to another

Once a transaction has been committed, the

 Concurrent transactions executed by maintaining isolation

results become permanent

XA

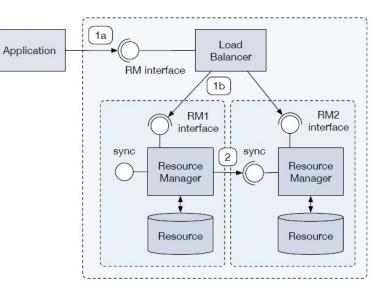
RM1 interface

XA

2

Application

RM₂


interface

6

System Perspective - BASE^[2]

Basically Available, Soft state, Eventually consistent

- A system is basically available when supporting partial failures without total system failure
- The state of the system is soft in that it can change over time even if no further updates are made
- The system will eventually become consistent,
 if no new updates are made to the system

Introduction to SALT

□ ACID transactions provide convenient consistency

□ BASE systems scale to meet the larger demands

Both require users' trust

Blockchains address the trust concern with a system design than enables transactions which do not involve trust in a central party - becoming **TRUSTLESS**

Blockchains transactions cannot be described by neither ACID nor BASE.

SALT is introduced as a new acronym to describe the unique properties of blockchain-based transactions and systems

SALT - Transaction Perspective

- **S**equential: All transactions are processed sequentially ACID's Isolation.
- Agreed: A transaction is accepted when the majority of the network agrees on its validity - Unlike ACID and BASE, there is no central authority but a community consensus that determines the system's state.
- Ledgered: All agreed-on transactions are added to an append-only transaction ledger and cannot be revoked - ACID's Durability.
- Tamper-resistant: A transaction cannot be manipulated or censored Unlike with ACID and BASE, there is no central access management. The access control model is completely decentralized and tied to asymmetric cryptography.

SALT - System Perspective

- Symmetric: All nodes in the peer-to-peer network symmetrically share their responsibilities
- Admin-free: There is no concept of system administrator. Updates happen on an individual basis and are subject of a community consensus
- Ledgered: All peers maintain an append-only data structure of transactions which refer to as the ledger. For each transaction to be appended all nodes need to agree in order to maintain ledger's consistency
- Time-consensual: To ensure timely processing of transactions, the consensus algorithm targets a defined average time between the creation of two blocks
- **Block**: a data structure that groups a set of transaction in the blockchain model.

SALT, ACID and BASE Comparison

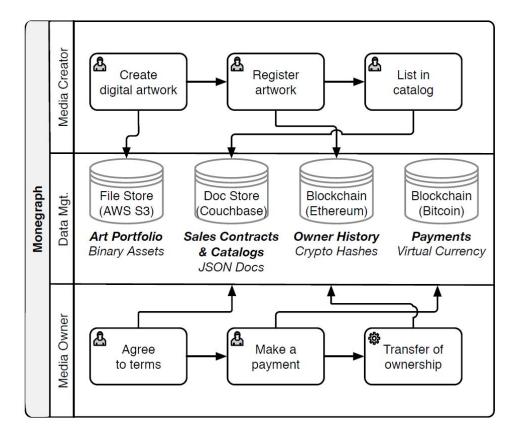
- ACID's Atomicity: A SALT transaction is simpler and there is no concept of grouping into an atomic unit-of-work.
- ACID's Isolation: Closely related with SALT's **S**equential property.
- BASE's Soft State: ACID and SALT define a global order of transaction execution
- ACID's Consistency: Closely related with SALT's Agreed-on property that refers to the validity of the transactions
- ACID's **D**urability: Related with SALT's Ledgered property
- ACID loses in availability for consistency, BASE loses in consistency for availability and SALT loses in scalability for trustlessness ^[3]

SALTy Use Cases

- How to design decentralized transactional applications that use blockchains?
- Innovative companies already adopted blockchain technology in several domains:
 - Financial applications
 - Notary services
 - Digital content monetization
 - Decentralized storage
 - Decentralized IoT

□ Two non-financial use cases will be discussed

Monegraph Use Case


Content Distribution and Monetization platform for transferring rights of digital artwork to media owners ^[4]

Transactions Perspective

- Media creators create and register their digital artwork as a public record
- Media owners use the platform to agree terms, make payments using bitcoin and transfer ownership of the public record

SALT Properties

- **Sequential:** Prevent double selling
- **Agreed:** Trust the Majority
- Ledgered: Records cannot be revoked
- **Tamper-resistant:** Difficult to forge transactions

Monegraph Use Case

Content Distribution and Monetization platform for transferring rights of digital artwork to media owners ^[4]

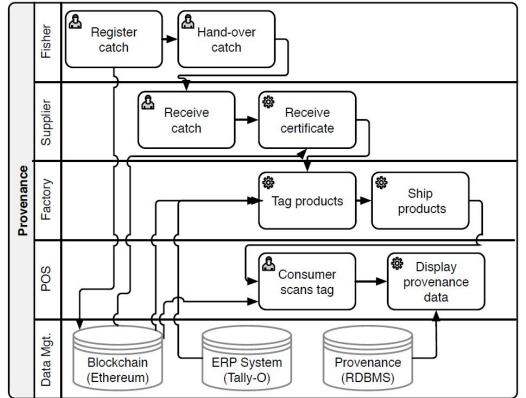
Systems Perspective

- Use of blob storage for digital artworks
 (Petabytes of unstructured data)
- Use of NoSQL for sales contracts and catalog data (Terabytes of semi-structured data)
- Use of Ethereum system for ownership history of digital artworks as crypto hashes
- Use of Bitcoin system for facilitating payments

SALT Properties

- Ledgered: Simplify revenue sharing between multiple parties.
- □ **Time-consensual:** Append transactions after a defined average time

Provenance Use Case

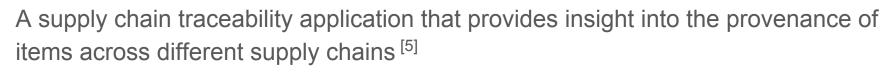

A supply chain traceability application that provides insight into the provenance of items across different supply chains ^[5]

Transactions Perspective

- Fisher triggers the creation of a public digital certificate that represents the physical good (e.g., tuna)
- Suppliers receive the product along with its digital certificate
- The factory tags the product (e.g., using QR codes, NFC tags, etc.), and linking to the certificate is created
- Consumers scan the tag and retrieve information regarding the product's provenance

SALT Properties

- **Agreed:** All parties agree automatically through a consensus protocol
- Ledgered: Practically impossible to revoke transactions once they have been appended



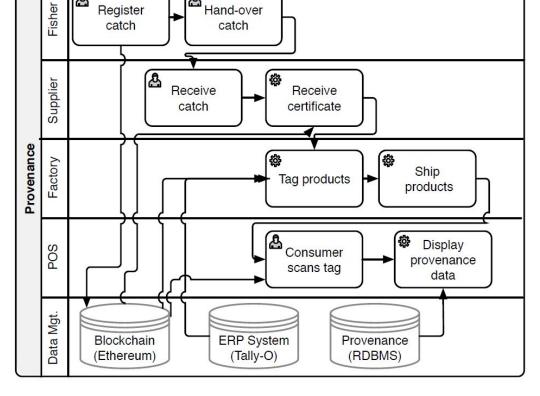
auditable and shared data layer Blockchain serves as an integration layer between different stakeholders with

- heterogeneous IT systems Peer-to-peer setup and cryptographic
- properties make it impossible for single governing party to manipulate data at any point of the supply chain

SALT Properties

- Symmetric: Symmetrically shared responsibilities to all stakeholders
- Admin-free: No IT system is required for integration and auditing. Also simpler authentication system.

ക്രി


ക

Systems Perspective

Use of Ethereum blockchain as a secure,

Provenance Use Case

15

Challenges

- Given a combination of different transaction models and systems, including SALT, are there system-wide application properties that can be guaranteed?
- With blockchain technology advancing at a rapid pace, will ACID, BASE and SALT continue to co-exist as alternatives, or can frameworks and solutions stacks be designed that impose an integrated data management using all three models?

Other perspectives?

- e.g., a consensus-perspective, or a blockchain technology (platforms and tools) perspective.
- Is less SALT actually healthy, whenever closed networks with different consensus algorithms and asymmetric peers are suggested?
 - Private and permissioned blockchains, as opposed to the public blockchains discussed in this paper, maintain some of the SALT properties, while compromising others.

How, and at what costs, can scalability be improved?

Scalability (of blockchains and blockchain-based applications) is a major limitation of current blockchain technology.

References

- 1. Gray, J. and Reuter, A. (1992). Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition
- 2. Pritchett, D. (2008). BASE: An acid alternative. ACM Queue, 6(3):48–55
- 3. Tai, S. (2017). Continuous, trustless, and fair: Changing priorities in services computing. In Advances in Service-Oriented and Cloud Computing (ASOCC). Springer
- 4. Monegraph (2017). <u>https://monegraph.com/</u> Accessed: 2017-02-07
- 5. Provenance (2017). <u>https://www.provenance.org/</u> Accessed: 2017-02-07