
16-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 16
Big Data Management VI

(MapReduce Programming)
Credits: Pietro Michiardi (Eurecom): Scalable Algorithm Design,

Apache MapReduce Tutorial

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science
University of Cyprus



16-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Outline of Lecture

• MapReduce “Hello World” Program Explained
– Wordcount in MR, Example Execution, Pseudocode
– Mean Computation in MR, JAVA API Preview

• Operational Issues: 
– What to configure and what not

• Combiners and In-Memory Combiners
• Relational Operators in MR

– Selection/Projection
– Union / Intersection / Set Difference
– Join /Aggregation



16-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Introduction to Hadoop 
Programming

• In the previous lecture we learnt how a MapReduce program executes 
in a Hadoop Environment without actually seeing the program.

• In this lecture we will learn more about the basic principles on how to 
write MapReduce Programs in Hadoop.

• To validate some of the ideas in this lecture, ensure that Hadoop is 
installed, configured and running. More details:
– Single Node Setup for first-time users.
– Cluster Setup for large, distributed clusters.

• In our laboratory we will use a Single Node Setup (consult the image 
that has been circulated by the TA).
– Hadoop v2 requires Java 7 or greater
– Hadoop v3 requires Java 8 – our labs & assignments J
– New Features: HDFS Erasure encoding, YARN v2 Timeline service (HBase store) 

Opportunistic containers, 2 Namenodes, default ports changed, Filesystem 
Connectors (e.g., Microsoft Azure Data Lake), Intra-DataNode Balancer

https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/ClusterSetup.html


16-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

MapReduce “Hello World”
(WordCount 1/2)

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1); // optimized serialization of JAVA.Integer() class 
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken()); context.write(word, one);
}

} // map
}

Applications may override 
the run(org.apache.hadoop.mapreduce.Mapp
er.Context) method to exert greater control 
on map processing e.g. field delimiters, etc.

As of JAVA 7 Generic Example: no way to verify, 
at compile time, how the class is used (e.g., as 
Integer, String, etc. L

} }Input(k,v) Output(k’,v’)

}Input(k,v)
}

Output(k’,v’)

https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html


16-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

MapReduce “Hello World”
(WordCount 2/2)

public static class IntSumReducer  extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

As of JAVA 5 Enhanced For Loop: iterate 
through all the elements of a Collection. 

} }Input(k,v) Output(k’,v’)

> Implementing this interface allows an object to be 
the target of the "for-each loop" statement. (as of 1.5)

}

Output(k’,v’)
Cleanup(), setup() are not mandatory 
in Mapper (see next slide)!

Multi-threading is possible with 
MultithreadedMapper when the Mapper 
is not CPU bound (the time to complete 
the task is not determined by the slow 
CPU but the Mapper logic).
=> If using more CPU power would 
speedup the program execution.



16-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Execution
(Wordcount, Anagram)

In laboratory you saw the 
anagram problem

Map(“eilnst”, Silent”)
Map(“eilnst”, “Listen”)

Reduce(“eilnst”, [Silent, 
Listen])

=> Each reducer takes care of 
each key.

sort

Remember!
The Map() and Reduce() blocks are 
the personal loops of the tasks, i.e.,
• 1 Map per partitioned data group. 
• 1 Reduce per unique key.



16-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Mapper Functions
(Reducer Similar)

Mapper Functions
•protected void setup(org.apache.hadoop.mapreduce.Mapper.Context context) 
throws IOException, InterruptedException

– Called once at the beginning of the task.
•protected void map(KEYIN key, VALUEIN value, 
org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, 
InterruptedException

– Called once for each key/value pair in the input split. Most applications should 
override this, but the default is the identity function (k,v) => (k,v).

•protected void cleanup(org.apache.hadoop.mapreduce.Mapper.Context context) 
throws IOException, InterruptedException

– Called once at the end of the task.
•public void run(org.apache.hadoop.mapreduce.Mapper.Context context) throws 
IOException, InterruptedException

– Expert users can override this method for more complete control over the execution 
of the Mapper.

•Methods inherited from class java.lang.Object: clone, equals, finalize, 
getClass, hashCode, toString, thread control: notify, notifyAll, wait
•How to run the code – More details: 
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html#Mappe
r()

http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html


16-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Word Count Pseudocode
(easier for next slides)

Both MAPPER and 
REDUCER could skip EMIT(), 

e.g., the case of filter

Iterator <> TABLE
(we need to begin from 

the beginning in the 
iterator if we want to 

rewind, iterator.reset())



16-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Example:
Mean Computation 

Problem:
• We have a large dataset where input keys are strings and input values 
are integers  (e.g., http://www.cs.ucy.ac.cy, 10s)
• We wish to compute the mean of all integers associated with the same key
• Almost identical to “word count” (now “word average”)! 

Identity emit function (could 
be omitted as it is default)

Note!: A good idea here would be to use a 
symmetric hash (e.g., MD5), i.e., key=md5(URL) 

instead of key=URL to minimize string 
comparisons. At the end we could   
URL = reverse-md5(md5(URL))

http://www.cs.ucy.ac.cy/


16-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Operational Issues
Aspects that are not under the control of the designer 
• Where a mapper or reducer will run 
• When a mapper or reducer begins or finishes 
• Which input key-value pairs are processed by a specific mapper 
• Which intermediate key-value pairs are processed by a specific reducer 
Aspects that can be controlled 
• Construct data structures (intermediate results) as keys and values 
• Execute user-specified initialization (setup()) and termination code 
(cleanup()) for mappers and reducers
• Preserve state across multiple input and intermediate keys in mappers and 
reducers (in-memory combiners – discussed next)
• Control the sort order of intermediate keys, and therefore the order in 
which a reducer will encounter particular keys.
• Control the partitioning of the key space, and therefore the set of keys that 
will be encountered by a particular reducer.



16-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Combiners (optional)        
• Combiners are a general mechanism to reduce the 

amount of intermediate data (after the map task)
– They could be thought of as “mini-reducers” before data is 

shipped to reducers 
– Reduce the number and size of key-value pairs to be shuffled 

• Back to our running example: word count 
– Combiners aggregate term counts across documents processed 

by each map task 
– If combiners take advantage of all opportunities for local 

aggregation we have at most m × V intermediate key-value 
pairs 

• m: number of mappers 
• V : number of unique terms in the collection 

– Note: due to Zipfian nature of term distribution             s              , 
not all mappers will see all terms.

*

Fr
eq

ue
nc

y
Word



16-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Combiners (optional)
• The use of combiners must be thought carefully 

– In Hadoop, they are optional: the correctness of the algorithm 
cannot depend on computation (or even execution) of the 
combiners 

– In Apache Spark, they’re mostly automatic 
Combiners Shuffling

mapreduce.reduce.shuffle.



16-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Combiners (optional)        
• Hadoop does not guarantee combiners to be 

executed 
– Actually, combiners might only be called if the number of map 

output records is greater than a threshold, i.e., 4 
• Problem: Can we enforce the execution of 

aggregation at the end of the Map phase?
– J Yes, by implementing the aggregation logic in Mapper.
– L Not always very good as it the function state:

• In-memory combining breaks the functional programming 
paradigm due to state preservation.

• In-memory combining strictly depends on having sufficient 
memory to store intermediate results 

• A possible solution: “block” and “flush” 
– Nevertheless, let’s see an example…

*



16-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

In-Memory Combiners
(inside Mapper)

• We use a hash map to accumulate intermediate 
results 
– The data structure is also know as “associative array” or 

“dictionary” 
– The array is used to tally up (aggregate) term counts within a 

single “document” 
– The Emit method is called only after all InputRecords have been 

processed 



16-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Selections (σ) in MapReduce
• Revision of Relational Algebra Operators

– http://www2.cs.ucy.ac.cy/~dzeina/courses/epl342/schedule.html  
(Lecture 8 and 9).

• In practice, selections do not need a full-blown 
MapReduce implementation 
– They can be implemented in the map phase alone 
– Actually, they could also be implemented in the reduce portion!
– Remember that the input to Reduce is an Iterator (it is constructed 

as the packets arrive at the reducer not a fully constructed list on 
which).

• A MapReduce implementation of σC(R) 
– For each tuple t in R, check if t satisfies C
– If so, emit a key/value pair (t, NULL)
– (VOID) Identity Reducer



16-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Projections (π) in MapReduce
• A note on duplicates in projections:

– Relational Algebra (π) generates NO duplicates (RA operates 
with sets). Notation we use: πDISTINCT S(R) 

– SQL (SELECT): generates duplicates (SQL operates with 
multisets). Notation we use SELECT: πS(R).  Of  course there is 
also SELECT DISTINCT, again notated with πDISTINCT S(R) 

• How to implement Projections in MR?
– πS(R) (ALL): Keeps Duplicates => Only requires map task. 
– πDISTINCT S(R): Removes Duplicates => Requires map + reduce

• πDISTINCT S(R) Implementation
MAP
– For each tuple t in R, construct a tuple t’ that contains only the S columns.
– Emit a key/value pair (t’,NULL)
REDUCE 
– Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only.
– Emit a key/value pair (t’, NULL) 



16-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Unions (∪) in MapReduce
R ∪ S = { x | x ∈ R ∨ x ∈ S } 

– Relations R and S must have the same schema!
• A note on duplicates in unions:

– R ∪ALL S : Keeps Duplicates => Requires Map Task only
– R ∪ S : Removes Duplicates => Requires Map + Reduce Task

• Outline of R ∪ S Implementation:
– Map tasks will be assigned chunks from either R or S *
– Mappers don’t do much, just pass by to reducers. Reducers do duplicate 

elimination (not necessary in R ∪ALL S)
– * Note: Hadoop MapReduce supports reading multiple inputs. 

• How to implement R ∪ S in MR? 
MAP:  For each tuple t in R and S, emit a key/value pair (t, NULL) // identity function
REDUCE 
– Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only.
– Emit a key/value pair (t’, NULL) // i.e., Either an R tuple or an S tuple.
– Also works when R and/or S have duplicates => Still generates (t’, [<NULL>]), 

R: 1, 2, 2, 2, 3, 4, 4
S: 2, 3, 4, 4, 4, 5

R UNION S: 
1, 2, 3, 4, 5
R UNION ALL S: 
1, 2, 2, 2, 3, 4, 4, 2, 3, 4, 4, 4, 5



16-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Intersection (∩) in MapReduce
R ∩ S = { x | x ∈ R ∧ x ∈ S }

– Relations R and S must have the same schema!
• A note on duplicates in intersections:

– R ∩ S : Removes Duplicates => Map + Reduce
– R ∩ALLS: Keeps Duplicates=> Map+Reduce (not available in most DBMS)

• Outline of R ∩ S Implementation:
– Map tasks will be assigned chunks from either R or S 
– Mappers don’t do much, just pass by to reducers. Reducers do duplicate 

elimination (not necessary in R ∩ ALL S)
• How to implement R ∩ S in MR (R, S: no duplicates)

MAP:  For each tuple t in R and S, emit a key/value pair (t, t)
REDUCE 
– Foreach key t’ obtained from the mappers, if (t’, [t’, t’]) (i.e., these 2 entries must 

have come from R and S) then emit the key/value pair (t’, NULL)
– Otherwise, emit nothing // i.e., (t’, [t’]) OR (t’, [<NULL>])
– // If R, S contain duplicates, I must annotate the t in map (t,‘R’), (t,‘S’),  … to 

avoid self-intersection within R and within S, respectively.

Examples:
R: 1, 2, 2, 2, 3, 4, 4
S: 2, 3, 4, 4, 4, 5

R INTERSECT S: 2, 3, 4
R INTERSECT ALL S: 2, 3, 4, 4



16-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Set Difference (-) Revision
R – S = { x | x ∈ R ∧ x ∉ S }  Note: R – S ≠ S – R

– Relations R and S must have the same schema!

|Instructor|=5

|Student|=7

|Student- Instructor| = 5 |Instructor – Student| = 3

*
*

*

*



16-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Set Difference (-) in MR
• Outline of R - S Implementation:

– The map function passes tuples from R and S to the reducer
– it must inform the reducer whether the tuple came from R or S!

• How to implement R - S in MR?
MAP:  
- For a tuple t in R emit a key/value pair (t, ′R′) and for a tuple t in S, emit a 

key/value pair (t,′S′)
REDUCE:
– For each key t, do the following:

• If the input is (t,[′R′]), then emit (t, NULL) 
• If the input is (t,[′R′, ′S′]) or (t,[′S′, ′R′]), or (t,[′S′]), don’t emit anything!



16-21
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Join (    ,Ä) in MapReduce
R Ä<attr> S  = s<attr>(R× S)

• This topic is subject to continuous refinements 
– There are many JOIN operators and many different implementations 

• Let’s look at two relations R(A, B) and S(B, C) 
– We must find tuples that agree on their B components 
– We shall use the B-value of tuples from either relation as the key 
– The value will be the other component and the name of the relation 
– That way the reducer knows from which relation each tuple is coming from 
• How to implement R Ä S in MR?
MAP:

– For each tuple (a,b) of R emit the key/value pair (b, (‘R’,a))
– For each tuple (b,c) of S emit the key/value pair (b, (‘S’,c))
REDUCE:  
– Each key b will be associated to a list of pairs that are either (‘R’, a) or (‘S’, c)
– Generate key/value pairs (b,[(a1,b,c1), (a2,b,c2), …, (an,b,cn)] and emit the unique 
triples (a,b,c) => the final unique step would be best to be implemented with a second MR 
job – see assignment!



16-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Aggregation (γ) in MapReduce
• We already discussed Aggregates, remember the Mean Example.

– Map: The map operation prepares the grouping
– Reduce: The reducer computes the aggregation.
– Simplifying assumptions: one grouping attribute and one aggregation function. –

easy to lift these assumptions and generalize the discussion.

• Different Types of Aggregates :
– Distributive Aggregates: COUNT,SUM,MAX,MIN,AVG(S/C)  => reduce uses a 

rolling computation of the aggregate.
– Holistic Aggregates: MEDIAN, MEAN => reduce has to retain all incoming tuples 

(coming through the iterator) (k,[v1,…,vn]) and then compute the aggregate.

• How to implement γΑ,θ(Β)R in MR?
MAP:  For a tuple t (a,b,c) in R emit a key/value pair (a,b)
REDUCE: For each key t, do the following:

• Distributive Aggregates: Apply θ on the incoming tuples [b1,…bn] on-the-fly 
• Holistic Aggregates: Accumulate the incoming tuples in a table. At the end 

apply  θ on the constructed table.
• Emit the key/value pair (a,x) where x = θ([b1,…,bn])



16-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour © (University of Cyprus)

Generalizing MR Operators
• Having developed operators for basic RA operators, 

one could now develop higher-level declarative 
languages (e.g., SQL, PIG) that translate into MR jobs!

• Example Apache HUE on top of HIVE (Hadoop / HDFS)

- The open source
SQL Assistant for 
Data Warehouses

https://gethue.com/
https://gethue.com/
https://gethue.com/

