Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 3

Storage |I: Disks and Files
Chap. 9.1-9.7: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

3-1

Lecture Outline
Overview of Storage and Indexing

Note: In lecture 2 we gave an overview of Storage and
Indexing. In this lecture we will explore Storage (Disks
& Files) in more detail.

91-92) Disks & RAID and Execution

— Components (2uoTaTikd) of a Disk

— Accessing ([NMpootréAacn) a Disk Block.

— Arranging (Aiara¢n) Pages on Disk

— RAID Basic Concepts, Levels: 0 to 5 and 0+1

9.3) Disk Space Manager (AiaxelipioTAC prou

9.4) Buffer Manager (Aiaxeipiotnc Kpugpnc Mviung)
— Definitions (Pin/Unpin, Dirty-bit), Replacement Policies (LRU, MRU,
clock), Sequential Flooding, Buffer in OS

9.5-9.7) File, Page and Record Formats

— File Structure (Linked-List/Directory-based), Page Structure with
Fixed/Variable-length records, Record Structure (Fixed-
length/Variable-length), System Catalog

Query Optimization

Files and Access Methods

Buffer Management

Disk Space Management

3-2

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Magnetic Disks
(MayvnTikoi Aiokotl)

DBMS stores information on (“hard”) disks.

This has major implications (emirtwoeig) for DBMS design!
- READ: transfer data from disk => main memory (RAM).
-~ WRITE: transfer data from RAM => disk.

Both are high-cost operations, relative to in-memory (RAM)
operations, so must be planned carefully!

We already mentioned that Data is stored and retrieved in
units called pages (or disk blocks).

Unlike RAM, time to retrieve a disk page varies depending
upon location on disk.

— Therefore, relative placement (toro0£Tnon oe eyyunRtTnTa)

of pages (utilized together) on disk has major impact on
DBMS performance!

3-4

Magnetic Disks
(MayvnTikoi Aiokol)

HDD (Hard
Disk Drive)

SSD (Solid
State Disk)

e

Controller
-

S

e PPN O
. N

s
-

- ;(
o~
'y

-

’\\ P .
i - e W
- b
. - .
" e . \; ™ - .-
/ &
=

-,

—

Accessing a Disk Block

(MpooméAaon MtrAok Aiokou)
 Access Time (Xpévog lNpéocBaong) of a Disk Block (Page) =

+ Seek time (Xpovoc¢ Avalnrnoncg): Time to move arms to position
disk head on track.

+ Rotational Delay (Ka@Guorépnon lNepiorpoenc): Waiting for head
to rotate to expected block (upto 15K rpm)

+ Transfer Time (Xpovo¢ Msrapopdac): Time to move data to/from
disk surface).

+ Seek time and Rotational Delay dominate.
_ Seek time varies from about 1 to 20msec H2AUR QLIPS

- Rotational delay varies from 0 to 10msec & @

- Transfer rate is about 1msec per 4KB page g&

* Key to lower I/O cost: reduce seek/rotation
delays!

faster

3-7

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

RAID: Redundant Array of Independent* Disks
(Epedpikéc 2ZuoTolyiec AveéapTnTwy AioKwyv)

* Disk Array: Arrangement of several disks that
gives abstraction of a Single, Large Disk!

» Goals:
— Increase Performance (Etridoon);
« Why? Disk: a mechanical component that is inherently slow!

— Increase Reliability (AglotrioTia).
« Why? Mechanical and Electronic Components tend to fail!

* Historically
used to be

Inexpensive
3-10

A.

B.

RAID: Key Concepts
(RAID: Baolkeéc Apxeq)

Striping (Alaxwpiopog): the splitting of data across

more than one disk using a round-robin (i mod disks);
Improving Performance (Emidoorn) and Load
Balancing (e¢icoppo1Tnon gopTtou)!
NOT improving Reliability (agiomioTia)! (if one disk
fails all data is useless)

Mirroring (KatotrTpiopu6g) or Shadowing (Zkiaon):

the copying of data to more than one disk

- Improving Reliability (ASiomioTia)!

— Improving Read Performance but NOT Write
Performance (same as 1 disk!) / Wasting space

Error Detection/Correction (Evrotmriopog/Ai6pOwon

2paApaTwy): the storage of additional information,

either on same disks or on redundant disk, allowing

the detection (parity, CRC) and/or correction

(Hamming/Reed-Solomon) of failures.

AID levels combine the above basic concepts: 0

(striping), 1 (mirroring), 4,5 (parity)(

Disk A DiS%kA
e
3 [2
4 4
~ Disk C
A) Striping
Disk A Disk B
1 1
2 2
3 3
4 4
B) Mirroring
Disk A Disk B
1 1
2 2
3 3
4 4
1]

C) Error Detection

3-11

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Disk Space Management

3-17

Buffer Management in a DBMS
(AlaxeipioTng Kpupng Mvnung)

Page Requests from Higher Levels Opoloyia
| Buffer Frame =
BUFFER POOL DBMS Page =

Vg Disk Block

disk page

S

free frame

MAIN MEMORY

DISK ch0|ce of frame dictated
DB
by replacement policy
» Data must be in RAM for DBMS to operate on it!

« A <pageid,dirty,pin> is maintained for each frame#
3-18

When a Page is Requested ...

(Otav aiteital pyia oeAida. ..)

Case 1: Page is in Pool

— Pin (emikoAAnon, auénon uerpnrn) the page and
return its address to the higher layer (file layer).

Case 2: Page NOT in Pool

Step 1 (Find): Choose a frame (page) for
replacement (A page is a candidate for
replacement iff pin_count = 0). If no such page exist
then page cannot be loaded into BM.

Step 2 (Save): If frame (page) is dirty (has been
modified by a write), then write it to disk

Step 3 (Load): Read requested page into chosen

frame, pin page and return its address.
3-19

More on Buffer Management

« Unpinning a page: Higher levels (requestors of page) i)
unpin a page (when not needed anymore) and ii) set the
dirty-bit to indicate the case a page has been modified.

 Replacement Policy: Policy that defines the buffer frame
than needs to be removed from the pool:
— LRU (using queue, remove the oldest from pool),
— MRU (using stack, remove newest from pool),
— RANDOM (randomly)
« Sequential flooding (I pauuikn YmrepxeiAion): Situation
caused by LRU + repeated sequential scans (cdpwan).

buffer frames < # pages in 1 12
file means each page request 1?7 miss 27 miss 37 miss

causes an |/0O. 3 2| 3 1 2 1
1? miss 2? miss 3?7 miss 3-20
Sequential flooding

Context of next slides

Query Optimization

and Execution

Relational Operators

I} Files and Access Methods

Buffer Management

Disk Space Management

3-22

Files of Records

(Apxeio ammo Eyypa@eg)
« Page or block is OK when doing /O, but higher

levels of DBMS operate on records, and files of
records .

* FILE: A collection of pages, each containing a
collection of records. Must support:
- insert/delete/modify record

- read a particular record (specified using record id)

- scan all records (possibly with some conditions on
the records to be retrieved)

3-23

Unordered (Heap) Files

(Mn-OlateTaypeva Apxeia 2wpou)

Simplest file structure contains records in no

particular order.

As file grows and shrinks, disk pages are
allocated and de-allocated.

To support record level operations, we must:

— keep track of the pages in a file
- keep track of free space on pages
- keep track of the records on a page

There are many alternatives for keeping
track of this. The following discussion
presents these alternatives.

Header \

Page

e SlotDir
cord Record
Recor:

d Record

Context

3-24

Keeping Track of Empty Pages .
(BpiokovTag Tlc; Za)\iéag ue Xwpo)

F|Ie

Page Page

Paae SlotDir
Full Pages Record Record
Record Record

Context

Data Data Data ,
> Page Page Page Pages with
Free Space

SolutlonA i

Linked-List Organization: Each page contains 2 "pointers’ plus data.

« Every time we delete some data from a page it is added to the Free-
Space list

 Drawbacks:
— All pages might end up in the Free-space list (every page might have a few empty
bytes)
— _Linked list too big to fit.into main memory, the next approach solves this problem!3-25

Keeping Track of Empty Pages
(BpiokovTag TIg 2EAIOEC e XWPO)

Page Page

\ |

N
Record Record

ﬂ Record Record

C _ Context

* Directory-based Organization (Opyavwon e
Eupemplo)
— The entry for a page can include the number of free bytes on the
page. That is useful to find if a page has enough space.

« The directory itself is a linked-list of directory pages;

— Much smaller than linked list of all File pages used in previous solution!
3-26

Page

Managing Slots on a Page with
Fixed-Length Records

PACKED UNPACKED, BITMAP| | reaser
Slot 1 Slot 1 FEGE FEgE
Slot2 M I
Record Record
Free Context
Space

Slot N Slot N
Slot

N 1...011|M+\

Number of recor&s M.. 321 number
of slots

w Packed: If record Is deleted move the last record on
the page into the vacated slot

w That changes RID (PagelD, SlotIlD),which is not acceptable!

w Unpacked/Bitmap: Keep M-Bitmap which indicates
which slots are vacant

3-27

Managing Slots on a Page
with Variable Records ="

Page Page
Paoe . SlotDir
Record Record

Rld = 1 N Record Record
P a g e i Gontext

Compacid T,

Areaw/ith/ R'd—'fl/so

ool ST
[

- S~
Length of
\ recond
20 T 16 24 N A Pointer
to start
. . N . .. 2 1 # SlOtS of free
wSlotted Organization: ~—_ space

w-Suitable for Variable-size Records (slots never moved)

w-Can move records on page without changing RID so,
attractive for fixed-length records too. 3-28

Record Formats: Fixed Length
(Aoun Eyypaeng: Ztabepou Mnkoug)

Header
Page Page

Paae SlotDir
BREEeAM Record
Record Record

Fixed-length Record Context
Fl F2 F3 F4 Field |
(Attribute)
— L1—| 12 L3 L4
\ \ Li = Length
of field i

Base address (B) Address = B+L1+L2

 Information about field types same for all records in a
file; stored in system catalogs (karadAoyo¢ ouaTnuarog).

* Finding i’th field (or record) does not require scan of
file, but the position of the file (or record) can be
computed using simple offset arithmetic.

3-29

Record Formats: Variable Length
(Aoun Eyypapnc: MetaBAntou Mnkoug)

size, e.g., strings)
 Two alternative formats (# fields is fixed):

Field

Count— Fields Delimited by Special Symbols (e.g., NUL)

Field1

Field2

Field3

When a record has a variable length (occurs with fields of variable

File
Header

Page Page

. P SlotDir
F|e|d4 & Record

4

$

$

$

Record Record

$ Context

The drawback of the above format is that searching for a field
requires to step over all fields. A better approach follows

Integer-offsets

F1

F2

F3 F4

Array of Field Offsets
m Second solution offers direct access to i'th field, efficient storage, fast access,

SQL Server Data Types Example
(Characterization)

bigint

Integer from -2263 (-9 223
372 036 854 775 808) to
2"63-1 (9 223 372 036
854 775 807).

int

Integer from -2731 (-2 147
483 648) to 2"31-1 (2 147
483 647).

smallint

Integer from -2715 (-32
768) to 2215-1 (32 767).

tinyint

Integer from 0 to 255.

bit

1 bit

Integer O or 1.

decimal(precision, scale)

5-17

Numeric data type with
fixed precision and scale
(accuracy 1-38, 18 by
default and scale 0-p, 0 by
default).

numeric

5-17

Same as data type
'‘decimal’.

31

Financial data tvpe from -

System Catalogs
(KataAoyoc 2uoTruaToq)
For each relation a DBMS stores the following:
- name, file name, file structure (e.g., Heap file)
- for each attribute: attribute name and type
- for each index: index name
— Integrity constraints

For each index:
- structure (e.g., B+ tree) and search key fields

For each view:
— view name and definition

Plus statistics, authorization, buffer pool size, etc.

w Catalogs are themselves stored as relations},,

Catalog Name
pg_aggregate
pg_am
pg_amop

pPg_amproc

pg_attrdef
pg_attribute

pg_cast
pg_class

pg constraint

pg_conversion

pg database

pg_depend

System Catalog in PostgreSQL

Purpose
aggregate functions
index access methods
access method operators

access method support
procedures

column default values

table columns ("attributes"”,
"fields")

casts (data type conversions)
tables, indexes, sequences
("relations")

check constraints, unique /
primary key constraints,
foreign key constraints
encoding conversion
information

databases within this database
cluster

dependencies between
database objects

Catalog Name

pg description

rou

pg_index

pg_inherits
pg lanquage

pg_largeobject

pg_listener
pg namespace

pg_opclass

pQg_operator

pg_proc
pg_rewrite
pg_shadow
pg_statistic
trigger

pg_type

Purpose
descriptions or comments on
database objects

groups of database users
additional index information
table inheritance hierarchy
languages for writing functions
large objects

asynchronous notification
namespaces (schemas)

index access method operator
classes

operators

functions and procedures
query rewriter rules
database users
optimizer statistics
triggers

data types

For example, CREATE DATABASE inserts a row into the pg_database catalog --
and creates the database on disk.

3-33

Example of Attribute Table in a Typical
System Catalog

- Position
attr_name |rel_name type position| > within
attr_name |Attribute_Cat |string 1 relation
rel name |Attribute_Cat |string 2
type Attribute_Cat |string 3
position | Attribute_Cat |integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer -
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

3-34

Log-Structured Merge Files
(LSM)

e Log-structured merge trees are often used in
systems that handle heavy write loads, such as
certain types of databases, distributed storage
systems, and log-structured file systems.

e Examples:

— Google's LevelDB and BigTable, Facebook's
RocksDB, Apache's Cassandra, Amazon's

DynamoDB, ScyllaDB.

3-35

LSM Trees

time ;

Data stream of k-v pairs ..are buffered in sorted memtables

Voo
<

|__IN |

v

warted :

v

BN |

wrted >'

\'4

sorfed }

and pericdically flushed to disk..forming a set of small, sorted files.

3-36

