
University of Cyprus

Department of

Computer Science

EPL660: Information

Retrieval and Search

Engines – Lab 1

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

General Info

• Course website and material:

https://www.cs.ucy.ac.cy/courses/EPL660

• Lab Instructor Information:

– Email: paul.antoniou-AT-cs.ucy.ac.cy,

– Office: Β109 (Basement), Building ΘΕΕ01/FST01

https://www.cs.ucy.ac.cy/courses/EPL660

Lab Content

• Tools for Information Retrieval and processing

– Inverted index and Boolean retrieval model

• NLTK Python library / Apache OpenNLP library

– Apache Lucene: Full-text search library written in Java

– Apache Hadoop: Distributed storage and processing
of dataset of big data using MapReduce model

– ElasticSearch: Distributed search engine based on
Apache Lucene

– Apache Spark: General engine for big data processing

Information Retrieval (IR)

• In information retrieval (IR), we are interested to

extract information resources (e.g. documents)

relevant to an information need (query)

• Huge amounts of data are now on-line

– much of it is unstructured text

– IBM reported in June 2012 that 90% of data available

created in the past 2 yrs

https://www.ibm.com/developerworks/library/ba-predictive-analytics2/

Data Mining & Machine Learning

• Data mining (DM): discover the properties of large

data sources

– Big data: the data is so large that standard techniques

(hardware, algorithms, etc.) cannot be used

– Distributed storage & processing needed

– Uses Machine Learning or other techniques (e.g. data

visualization)

• Machine Learning (ML) is one source of tools

used to solve problems in Information Retrieval

– Design algorithms that can learn from experience and

make predictions on new data (supervised learning)

– Used to extract patterns from data (unsupervised

learning) to learn more about the data

Boolean retrieval model

• The Boolean Model (BM) is arguably the simplest

model to base an information retrieval system on

• First and most adopted

• Queries are Boolean expressions
e.g., Caesar AND Brutus

• The search engine returns ALL documents that

satisfy the Boolean expression.

Does Google use the BM?

Does Google use the BM?

• On Google, the default interpretation of a query
[w1 w2 . . .wn] is w1 AND w2 AND ... AND wn

• Cases you get hits that do not contain one of wi :

– anchor text

– page contains variant of wi (morphology, spelling

correction, synonym)

– long queries (n large) – Google may ignore some terms

– boolean expression generates very few hits

• Simple Boolean vs. Ranking of result set

– Simple Boolean retrieval returns matching documents in

no particular order

– Google (and most well-designed Boolean engines) rank

the result set – they rank good hits (according to some

estimator of relevance) higher than bad hits.

Boolean Queries

• The Boolean retrieval model can answer any

query that is a Boolean expression

– Boolean queries are queries that use AND, OR and NOT

to join query terms

– It is precise: Returns documents that match condition

• Primary commercial retrieval tool for 3 decades

• Many professional searchers (e.g., lawyers) still

like Boolean queries

– You know exactly what you are getting

Indexing

• Searching terms within huge number of

documents is a very slow process

• Idea behind indexing for information retrieval

– build an inverted index to speed retrieval

• a mapping from the terms to the respective documents

containing them

– building the index is slow, but it only needs to be built

once

– index can be built off-line, i.e., before queries have

been seen

information

retrieval

doc1 doc2

doc2

Dictionary Posting lists

Doc retrieval using inverted index

• An inverted index maps terms to the documents

that contain them

– “inverts” the collection (which maps documents to the

words they contain)

– permits to answer boolean queries without visiting

entire corpus

• An inverted index is slow to construct (requires

visiting entire corpus)

– but this only needs to be done once

– can be used for any number of queries

– can be done before any queries have been seen

• Usually the dictionary is kept in RAM, but the

postings lists can be stored on hard disk

Inverted index construction

1. Collect the documents to be indexed:
Friends, Romans, countrymen.

So let it be with Caesar. . . .

2. Tokenize the text, turning each document into a

list of tokens:
Friends Romans countrymen So . . .

3. Do linguistic preprocessing (lowercasing, stop

word removal, stemming, …), producing a list of

normalized tokens, which are the indexing terms:
friend roman countryman . . .

4. Index the documents that each term occurs in by

creating an inverted index, consisting of a

dictionary and postings.

Task (to be completed on next Lab)

• Build a system that :

– reads a dataset (corpus) of multiple text files

– preprocess data

– create dictionary and inverted index

– use Boolean retrieval model to pose queries and get

results

• Available tools:

– Natural Language ToolKit (NLTK) (Python)

– Apache OpenNLP (Java)

http://www.nltk.org/
http://opennlp.apache.org/

What is NLTK?

• Python interface to over 50 corpora and lexical

resources

• Suite of libraries (models) for a variety of

academic text processing tasks:

– tokenization, stemming, tagging,

– chunking, parsing, classification,

– language modeling, logical semantics

• Pedagogical resources for teaching NLP theory in

Python ...

Installation

• NLTK installation using pip (given that Python is

already installed on your machine)

– sudo pip install -U nltk

• Corpora and models installation

– Open Python IDLE or Spyder (if you have Anaconda

installed) and run the following commands in console

– import nltk

– nltk.download()

• Anaconda (Python 3.8,

Spyder IDE, NLTK)

already installed

on the given VM

(Some) Modules in NLTK
Language Processing

Task

NLTK module Some functionalities

Accessing corpora nltk.corpus Standardized interfaces

to corpora and lexicons

String processing nltk.tokenize Sentence and word

tokenizers

nltk.stem Stemmers

Part-of-speech tagging nltk.tag Various part-of-speech

taggers

Classification nltk.classify Decision tree, maximum

entropy

nltk.cluster K-means

Chunking nltk.chunk Regular expressions,

named entity tagging

Apache

• Machine learning based Java toolkit for the
processing of natural language text

• Supported NLP tasks

– Tokenization / Sentence segmentation

– Part-of-speech tagging

• marks each word in a sentence with the word type (noun, verb,

adjective, …)

– Named entity recognition

– Chunking

• breaks sentence into groups (of words) containing sequential

words of sentence, that belong to a noun group, verb group, etc

– Lemmatization

• remove any changes in form of the word like tense, gender,

mood, etc. and return dictionary or base form of word

– Language detection

Installation

• OpenNLP 1.9.3 already installed on VM and

associated with Eclipse

• To install on your PC:

– Binaries for OpenNLP 1.9.3 from

https://mirror.library.ucy.ac.cy/apache/opennlp/opennlp-

1.9.3/apache-opennlp-1.9.3-bin.tar.gz

– Open Eclipse and add lib/ folder into classpath

• Window → Preferences → Java → Installed JREs

• Double click on the java-8-openjdk-amd64

• Add External JARs

• Select apache-opennlp-1.9.3/lib/opennlp-tools-1.9.1.jar file

• Press OK, Finish, OK

https://mirror.library.ucy.ac.cy/apache/opennlp/opennlp-1.9.3/apache-opennlp-1.9.3-bin.tar.gz

Hands on

• Run the NLTK examples shown in the next slides

• Download OpenNLP.zip eclipse project to

experiment with SimpleTokenizer,

WhitespaceTokenizer and DictionaryLemmatizer

classes

https://www.cs.ucy.ac.cy/courses/EPL660/labs/LAB01/OpenNLP.zip

NLTK: Corpora

• Task: Accessing corpora, stopwords

• NLTK module: nltk.corpus

• Functionality: interfaces to corpora, lexicons,
stopwords

– Load Gutenburg corpus from NLTK (full corpus here)

import gutenberg corpus (collection)

from nltk.corpus import gutenberg, stopwords

documents in gutenburg collection

all_filenames = gutenberg.fileids()

print(all_filenames)

['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-

kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt',

'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt',

'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt',

'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt',

'shakespeare-macbeth.txt', 'whitman-leaves.txt']

https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html

NLTK: Corpora
full text of shakespeare-hamlet.txt document

hamlet = gutenberg.raw('shakespeare-hamlet.txt')

list of words in hamlet document

hamlet_words = gutenberg.words('shakespeare-

hamlet.txt')

list of stop words

stopwords = stopwords.words('english')

print(stopwords[0:30])

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',

"you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself',

'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers',

'herself', 'it', "it's", 'its', 'itself']

NLTK: Text Processing

• Task: Text processing

• Modules: nltk.tokenize, nltk.stem

• Functionality: word tokenizers, sentence

tokenizers, stemmers, n-grams splitters

from nltk import word_tokenize, sent_tokenize

text1 = word_tokenize("The quick brown fox jumps over

the lazy dog")

print(text1)

['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']

text2 = sent_tokenize("The quick brown fox jumps over

the lazy dog. What a lazy dog!")

print(text2)

['The quick brown fox jumps over the lazy dog.', 'What a lazy dog!']

NLTK: Text Processing
from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer()

print(stemmer.stem('processing’))

process

sentence = "This is my sentence and I want to ngramize

it."

n = 6

w_6grams = ngrams(sentence.split(), n)

for grams in w_6grams:

print(grams)

('This', 'is', 'my', 'sentence', 'and', 'I')

('is', 'my', 'sentence', 'and', 'I', 'want')

('my', 'sentence', 'and', 'I', 'want', 'to')

('sentence', 'and', 'I', 'want', 'to', 'ngramize')

('and', 'I', 'want', 'to', 'ngramize', 'it.')

Stemming: the automated

process which produces a

base string

Ngramize: the process

which produces a

contiguous sequence

of n items from a given

sample of text or

speech

NLTK: Exploring corpora

• When starting to explore a corpus you may ask:

– How many total words does the corpus have?

– How many unique words does the corpus have?

– What are the counts for the 10 most frequent words?

• Task: Corpus frequency distribution

• NLTK module: nltk.FreqDist

from nltk import FreqDist

from nltk.tokenize import word_tokenize

data = "I like this course and I hope to pass this semester."

words = word_tokenize(data)

fdist = FreqDist(words)

print(fdist.N()) # Prints total number of tokens

print(fdist.most_common(2)) # Prints 2 most common tokens

OpenNLP: Simple Whitespace tokenizer
import opennlp.tools.tokenize.WhitespaceTokenizer;

public class WhitespaceTokenizerExample {

public static void main(String args[]) {

String sentence = "Hi. How are you? Welcome to EPL660. " +

"We are learning natural language processing tools using java language.";

// Instantiating whitespaceTokenizer class

WhitespaceTokenizer whitespaceTokenizer =

WhitespaceTokenizer.INSTANCE;

// Tokenizing the given paragraph

String tokens[] = whitespaceTokenizer.tokenize(sentence);

// Printing the tokens

for (String token : tokens)

System.out.println(token);

}

}

More info

• Java PorterStemmer implementation:

https://tartarus.org/martin/PorterStemmer/java.txt

• OpenNLP official tutorial and examples:

https://www.tutorialkart.com/opennlp/apache-

opennlp-tutorial/

• OpenNLP tutorial and examples:

https://www.tutorialspoint.com/opennlp/opennlp_t

utorial.pdf

https://tartarus.org/martin/PorterStemmer/java.txt
https://www.tutorialkart.com/opennlp/apache-opennlp-tutorial/
https://www.tutorialspoint.com/opennlp/opennlp_tutorial.pdf

Next Week’s Lab

• Write simple Python programs using NLTK

following the steps towards creating an inverted

index

• Programs must be submitted to Moodle

