
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Applied
Architectures and

Styles

Software Architecture
Chapter 11

Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Describe how the concepts from the previous chapters
can be used, sometimes in combination, to solve
challenging design problems

⚫ Highlight key issues in emerging application domains
that have architectural implications, or where an
architectural perspective is essential for system
development within that domain

⚫ Show how emerging architectures, such as P2P, can be
characterized and understood through the lens of
software architecture

2

Software Architecture: Foundations, Theory, and Practice

Outline

⚫ Distributed and networked architectures

Limitations

REST

Commercial Internet-scale applications

⚫ Decentralized applications

Peer-to-peer

Web services

⚫ Some interesting domains

Robotics

Wireless sensors

3

Software Architecture: Foundations, Theory, and Practice

Distributed and Networked
Architectures

⚫ The phrase “distributed applications” is used to denote
everything from

An application that is simply distributed across
multiple operating system processes all running on
the same physical uniprocessor, to

Integrated applications that run on multiple
computers connected by the Internet

⚫ A distributed model often supports ’location
transparency’

The developer should not necessarily know where the
various processes/objects comprising the application
are located in the network 4

Software Architecture: Foundations, Theory, and Practice

Limitations of the Distributed Systems
Viewpoint

⚫ However, masking the underlying presence of networks,
becomes difficult due to the presence of the following fallacies

The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

Topology doesn’t change

There is one administrator

Transport cost is zero

The network is homogeneous

-- Deutsch & Gosling
5

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW

⚫ (From lecture #1) This is the Web

6

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW
(cont’d)

⚫ So is this

7

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW

⚫ And this

8

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

WWW’s Architecture

⚫ The application is distributed (actually, decentralized)
hypermedia

⚫ Architecture of the Web is wholly separate from the code

⚫ There is no single piece of code that implements the
architecture

⚫ There are multiple pieces of code that implement the various
components of the architecture

E.g., different Web browsers

⚫ Stylistic constraints of the Web’s architectural style are not
apparent in the code

The effects of the constraints are evident in the Web

⚫ One of the world’s most successful applications is only
understood adequately from an architectural vantage point

9

Software Architecture: Foundations, Theory, and Practice

REST Principles

⚫ [RP1] The key abstraction of information is a resource,
named by an URL; any information that can be named
can be a resource

⚫ [RP2] The representation of a resource is a sequence of
bytes, plus representation metadata to describe those
bytes; the particular form of the representation can be
negotiated between REST components

⚫ [RP3] All interactions are context-free: each interaction
contains all of the information necessary to understand
the request, independent of any requests that may have
preceded it

10

Software Architecture: Foundations, Theory, and Practice

REST Principles (cont’d)

⚫ [RP4] Components perform only a small set of well-
defined methods on a resource producing a
representation to capture the current or intended state
of that resource and transfer that representation
between components; these methods are global to the
specific architectural instantiation of REST; for instance,
all resources exposed via HTTP are expected to support
each operation identically

11

Software Architecture: Foundations, Theory, and Practice

REST Principles (cont’d)

⚫ [RP5] Idempotent operations and representation
metadata are encouraged in support of caching and
representation reuse

⚫ [RP6] The presence of intermediaries is promoted;
filtering or redirection intermediaries may also use both
the metadata and the representations within requests or
responses to augment, restrict, or modify requests and
responses in a manner that is transparent to both the
user agent and the origin server

12

Software Architecture: Foundations, Theory, and Practice

An Instance of REST

13

$ $Clien t+Cache:Clien t Connecto r: Server Connecto r: Server+Cache:

$ $

Orig in Servers

User A gen t

$$

DNS

$DNS

Proxy

Proxy Gateway

wais

h ttp

o rb

h ttp

h ttp

h ttp h ttp

a

b

c

Software Architecture: Foundations, Theory, and Practice

An Instance of REST (cont’d)

⚫ Process view of a REST-based architecture at one
instance in time

⚫ A user agent is portrayed in the midst of three parallel
interactions: a, b, and c

⚫ The interactions were not satisfied by the user agent’s
client connector cache, so each request has been routed
to the resource origin according to the properties of each
resource identifier and the configuration of the client
connector

14

Software Architecture: Foundations, Theory, and Practice

An Instance of REST (cont’d)

⚫ Request (a) has been sent to a local proxy, which in turn accesses a

caching gateway found by DNS lookup, which forwards the request
on to be satisfied by an origin server whose internal resources are
defined by an encapsulated object request broker architecture

⚫ Request (b) is sent directly to an origin server, which is able to

satisfy the request from its own cache

⚫ Request (c) is sent to a proxy that is capable of directly accessing
WAIS, an information service that is separate from the Web
architecture, and translating the WAIS response into a format

recognized by the generic connector interface

⚫ Each component is only aware of the interaction with their own
client or server connectors; the overall process topology is an
artifact of our view

15

Software Architecture: Foundations, Theory, and Practice

REST — Data Elements

⚫ Resource

Key information abstraction

⚫ Resource ID

⚫ Representation

Data plus metadata

⚫ Representation metadata

⚫ Resource metadata

⚫ Control data

E.g., specifies action as result of message

16

Software Architecture: Foundations, Theory, and Practice

REST — Connectors

⚫ Modern Web Examples

client libwww, libwww-perl

server libwww, Apache API, NSAPI

cache browser cache, Akamai cache network

resolverbind (DNS lookup library)

tunnel SOCKS, SSL after HTTP CONNECT

17

Software Architecture: Foundations, Theory, and Practice

REST — Components

⚫ User agent

E.g., browser

⚫ Origin server

E.g., Apache Server, Microsoft IIS

⚫ Proxy

Selected by client

⚫ Gateway

Squid, CGI, Reverse proxy

Controlled by server

18

Software Architecture: Foundations, Theory, and Practice

Derivation of REST

19

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Derivation of REST (cont’d)

Key choices in this derivation include:

⚫ Layered Separation (a theme in the middle portion of diagram) is
used to increase efficiencies, enable independent evolution of
elements of the system, and provide robustness

⚫ Replication (left side of the diagram) is used to address latency and
contention by allowing the reuse of information

⚫ Limited commonality (right side) addresses the competing needs for
universally understood operations with extensibility

⚫ A fourth key issue is dynamic extension, i.e., by allowing clients to
receive arbitrary data described by meta-data, in response to a
request to a server, allows client functionality to be extended
dynamically and the client is able to perform new functions and be
customized to the needs of the client’s user

20

Software Architecture: Foundations, Theory, and Practice

REST: Final Thoughts

⚫ REpresentational State Transfer

⚫ It combines knowledge in open network-distributed
hypermedia and several simple architectural styles

⚫ A coherent architectural approach is derived by imposing
constraints on those architectural styles

⚫ It is a powerful tool to use in network-based applications
where issues of latency and authority boundaries are
prominent

⚫ It is also instructive in guiding architects in the creation
of other specialized styles

21

Software Architecture: Foundations, Theory, and Practice

Commercial Internet-Scale
Applications

⚫ Akamai

Caching (i.e., storing copies of files in a cache, or temporary
storage location, so that they can be accessed more quickly) to
the max

Replicates the origin server (where originally the cached content
is stored) at many locations throughout the network, and directs
user’s requests to the replicated server closer to the user

The replicants of the original server are called ’edge servers’ and
Akamai has located thousands of them throughout the Internet,
especially close to where ISPs join their networks to the Internet

The edge servers do have to access the origin server to update
their content, but by directing users to the edge servers,
demand on the origin server is kept manageable

22

Software Architecture: Foundations, Theory, and Practice

Commercial Internet-Scale
Applications (cont’d)

⚫ Google

Its applications rest upon the ability to manipulate very large
quantities of information, stored in inexpensive PCs running
Linux, and being fault-tolerant by supporting replication

The storing system is called GFS (Google File System), it is
simpler than a typical relational database and supports storage
of files that are very large (several gigabytes)

On top of it runs MapReduce, a programming model in which
users specify data selection and reduction operations

The MapReduce library parallelizes users’ operations to execute
on the thousands of processors available, without the user
needing to deal explicitly with this issue

The system is designed to deal with any failures of the
processors involved in the parallel executions of user queries 23

Software Architecture: Foundations, Theory, and Practice

Architectural Lessons from Google

⚫ Abstraction layers abound: GFS hides details of data
distribution and failure, for instance; MapReduce hides
the intricacies of parallelizing operations

⚫ By designing, from the outset, for living with failure of
processing, storage, and network elements, a highly
robust system can be created

⚫ Scale is everything: Google’s business demands that
everything be built with scaling issues in mind

24

Software Architecture: Foundations, Theory, and Practice

Architectural Lessons from Google
(cont’d)

⚫ By specializing the design to the problem domain,
rather than taking the generic “industry standard”
approach, high performance and very cost-effective
solutions can be developed

⚫ By developing a general approach (MapReduce) to
the data extraction/reduction problem, a highly reusable
service was created

⚫ Note the contrast between the two points above

On the one hand, a less general solution strategy was
adopted (a specialized file system rather than a
general database)

On the other hand, a general programming model
and implementation was created 25

Software Architecture: Foundations, Theory, and Practice

Decentralized Architectures

⚫ Networked applications where there are multiple
authorities

⚫ In other words

Computation is distributed

Parts of the network may behave differently, and vary
over time

E.g., web sites, e-commerce, etc.

It’s just like collaboration in the real
world (e.g., postal system)

26

Software Architecture: Foundations, Theory, and Practice

Grid Protocol Architecture

27

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

⚫ Coordinated resource sharing in a
distributed environment, using h/w and
s/w resources to solve a computational
problem (e.g., visualization of
simulations)

⚫ “Standard layered architecture”

Application contains the

components that implement the
user’s particular system

Collective coordinates the use of multiple resources

Resource manages the sharing of a single resource

Connectivity handles communication and authentication

Fabric manages the details of the low-level resources that

ultimately comprise the grid

Software Architecture: Foundations, Theory, and Practice

28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Grid Protocol Architecture (cont’d)

⚫ The elegance and
clean design of
this architecture
is not fully
maintained by a
number of grid
technologies

⚫ The figure shows
the recovered
architecture of the Globus grid system, derived from analyzing the
source code

⚫ Several up-calls in the architecture are present, violating the layered
systems principle

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer Architectures

⚫ Decentralized resource sharing and discovery

Napster

Gnutella

⚫ P2P that works: Skype

And BitTorrent

29

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer Style

⚫ State and behavior are distributed among peers
which can act as either clients or servers

⚫ Peers: independent components, having their own
state and control thread

⚫ Connectors: Network protocols, often custom

⚫ Data Elements: Network messages

⚫ Topology: Network (may have redundant connections
between peers); can vary arbitrarily and dynamically

⚫ Supports decentralized computing with flow of
control and resources distributed among peers

⚫ Highly robust in the face of failure of any given node

⚫ Scalable in terms of access to resources and
computing power 30

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer LL

31

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Hybrid CS/P2P: Napster

32

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Hybrid CS/P2P: Napster (cont’d)

⚫ Each of the peers is an independent program residing on the
computers of end users

⚫ Operation begins with the various peers registering themselves with
the central server (Peer & Content Directory)

When registering or later logging in, a peer informs the server of
its IP address and the music files that this peer can share (1,2)

⚫ The server maintains a record of the music that is available, and on
which peers

⚫ Later a peer may query the server as to where on the Internet a
given song can be obtained (3)

⚫ The server responds with available locations (4)

⚫ The peer then chooses one of those locations, makes a call directly
to the peer (5), and downloads the music (6)

33

Software Architecture: Foundations, Theory, and Practice

Hybrid CS/P2P: Napster (cont’d)

⚫ Architecturally, this system can be seen as a hybrid of client-server
and pure P2P

⚫ The peers act as clients when registering with Peer & Content
Directory and querying it

⚫ Once a peer knows where to ask for a song, a P2P exchange is
initiated

Any peer may thus sometimes act as a client (asking others for a
song) or a server (delivering a song it has to another peer which
has requested it)

⚫ Napster uses a proprietary protocol for interactions between the
peers and the content directory

⚫ If a highly desired song becomes available, the server will be
swamped with requests seeking its location

⚫ And if the server goes down, peers cannot access any content 34

Software Architecture: Foundations, Theory, and Practice

Pure Decentralized P2P: Gnutella

35

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Pure Decentralized P2P: Gnutella
(cont’d)

⚫ The original version was a pure P2P system; there is no central
server, and all peers are equal in capability and responsibility

⚫ If A is seeking a particular song, it issues a query to the peers on
the network that it knows, in this case B and H (1)

⚫ Assuming these peers don’t have the song, they pass the query to
other peers they know about: each other, and C and G (2)

⚫ Assuming that F has the song, it responds to the peer that asked it,
which in this case is C, telling it that it has the song (3)

⚫ C then relays this information along with F’s network address to the

peers that asked for this information

⚫ Eventually, A will obtain the address of F and initiates a direct
request to F (4)

⚫ The song is then downloaded (5)
36

Software Architecture: Foundations, Theory, and Practice

Pure Decentralized P2P: Gnutella
(cont’d)

⚫ Gnutella is highly robust; removal of any one peer from the
network, or any set of peers, does not diminish the ability of the
remaining peers to continue to perform

⚫ However, there are also a number of problems

How does a new peer find any other peers to send to them its
queries?

When a query is issued, how many peers will end up being
asked for the requested resource after some other peer has
already responded and provided the information?

How long should a requesting peer wait to obtain a response?

What assurance does the requesting peer have that the
information downloaded is that which was sought (and not, say,
a virus)?

37

Software Architecture: Foundations, Theory, and Practice

Overlayed P2P: Skype

38

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Overlayed P2P: Skype (cont’d)

⚫ Peer 1 logs into the Skype server
⚫ Skype server tells Peer 1 the address of Super-node A
⚫ When Peer 1 wants to see if any of its buddies are online, a

query is issued to Super-node A
⚫ When Peer 1 makes a Skype call, the interaction will

proceed to Super-node A, and then either to the receiving
peer directly (such as Peer 2) or to another super-node and
then to the receiving peer

⚫ If both peers are on public networks and not behind firewalls,
it is possible for those peers to interact directly (e.g., Peer 2
and Peer 3)

⚫ Super-nodes provide directory services and call routing
⚫ Login Server is under the authority of Skype.com but any

peer can become a super-node; peers get “promoted” to
super-node status based on their network and machine
performance 39

Software Architecture: Foundations, Theory, and Practice

Insights from Skype

⚫ A mixed client-server and peer-to-peer architecture addresses the
discovery problem, i.e., the network is not flooded with requests in
attempts to locate a buddy, as is the case with Gnutella

⚫ Replication and distribution of the directories, in the form of super-
nodes, addresses the scalability problem and robustness problem
encountered in Napster

⚫ Promotion of ordinary peers to super-nodes based upon network
and processing capabilities addresses another aspect of system
performance: “not just any peer” is relied upon for important
services and as many nodes as are dynamically required can
become super-nodes

⚫ A proprietary protocol employing encryption provides privacy for
calls that are relayed through super-node intermediaries

⚫ Restriction of participants to clients issued by Skype, and making
those clients highly resistant to inspection or modification, prevents
malicious clients from entering the network, avoiding the Gnutella
problem

40

Software Architecture: Foundations, Theory, and Practice

Resource Trading P2P: BitTorrent

⚫ The primary goal is to support the speedy replication of large files
on individual peers, upon demand

⚫ The aim is to maximize use of all available resources in the network
of interested peers in order to minimize the burden of any one
participant, thus promoting scalability

⚫ Unlike Napster and Gnutella, BitTorrent distributes parts of a file to
many peers, thus also distributing processing and networking loads

⚫ A peer does no obtain a requested large file from a single resource;
rather the pieces of the file are obtained from many peers and then
reassembled

⚫ Moreover, a peer is obliged to also upload the portions of the file
that it has to other interested peers (failure to do so leads in the
other peers deprioritizing this peer’s access to the parts of the file it
needs)

⚫ This strategy prevents a peer from becoming the recipient of a very
large number of requests (possibly more that the machine can
support) for a popular resource, as is the case with Napster and
Gnutella

41

Software Architecture: Foundations, Theory, and Practice

Insights from BitTorrent

⚫ Responsibility for the discovery of content is outside the scope of
BitTorrent; a user may use search engines to locate content

⚫ A designated (centralized) machine called the tracker is used to
oversee the process by which a file is distributed to an interested
set of peers

The tracker does not perform any file transfers; it merely
provides information to other peers so that the latter can
communicate between them and initiate downloads

⚫ Meta-data that describes how large files are “pieced”, the attributes
of those pieces, and the location of the tracker, are associated with
a file

⚫ Each peer participating in a file’s replication, determines
What piece of the file to download next
Which peer to obtain that piece from

⚫ All participating peers maintain knowledge of which peers have
which pieces

42

Software Architecture: Foundations, Theory, and Practice

Web Services

⚫ The notion is that business A could obtain some
processing service b from vendor B, service c from
vendor C, service d from vendor D, and so on

The service that A obtains from C might be based on
the result obtained from B in a preceding interaction

⚫ Service-oriented architectures (SOA) must deal with all
the network issues of distributed systems, plus the trust,
discovery, dynamism issues present in open,
decentralized systems

⚫ From an architectural perspective, participating
organizations on the Internet present a virtual machine
layer of services which users (client program) can use

43

Software Architecture: Foundations, Theory, and Practice

Web Services (cont’d)

44

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Web Services (cont’d)

⚫ In the previous figure, a client has an objective, such as
obtaining all the reservations, tickets, and travel
advances associated with an itinerary, and calls upon
various services (some of which may call other services)

⚫ However, this virtual machine is different than the one
we examined in chapter 4

Services (corresponding to functions in the classical
virtual machine architecture), are offered by different
agencies

They may be implemented in various ways, come and
go over time, pose carrying risks, etc.

45

Software Architecture: Foundations, Theory, and Practice

Web Services (cont’d)

⚫ How, architecturally, do we realize the notion of creating
business applications?

Describe the components, i.e., the services

Determine the types of connectors to use, i.e., how
the services will communicate and interact

Describe the application as a whole, i.e., how the
various services are orchestrated to achieve the
business goals

⚫ Connectors are usually realized as asynchronous event
notifications

46

Software Architecture: Foundations, Theory, and Practice

Web Services (cont’d)

47

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Web Services (cont’d)

⚫ The top part of the previous figure shows a service
requestor sending an XML document to a service
provider across the network by any of a variety of
protocols (e.g., e-mail, HTTP, etc.)

⚫ The XML document must be structured, so that both
parties understand it

⚫ The bottom part shows the response of the provider

⚫ However, in general, there is no obligation for the
provider to return anything to the requestor

48

Software Architecture: Foundations, Theory, and Practice

Mobile Robotics

⚫ Manned or partially manned vehicles

⚫ Uses

Space exploration

Hazardous waste disposal

Underwater exploration

⚫ Issues

Interface with external sensors & actuators

Real-time response to stimuli

Response to obstacles

Sensor input fidelity

Power failures

Mechanical limitations

Unpredictable events
49

Software Architecture: Foundations, Theory, and Practice

Robotics: Sense-Plan-Act

50

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Robotics: Sense-Plan-Act (cont’d)

⚫ The SPA architecture identifies the necessity of using
continuous feedback from the environment of a robot as an
explicit input to the planning of actions

⚫ The Sense component is responsible for gathering sensor

information from the environment

⚫ The Plan component uses this input to determine which

actions the robot should perform

⚫ These actions are then communicated to the Act component

for execution

⚫ Planning involves the use of sensory data to reconcile the
robot’s actual state with an internal model of the robot’s state
in the environment; this internal model is repeatedly updated
in response to newly acquired sensory inputs

51

Software Architecture: Foundations, Theory, and Practice

Robotics: Sense-Plan-Act (cont’d)

⚫ The main drawback of the SPA architecture is that
sensor information must be integrated and incorporated
into the robot’s planning models in order for actions to
be determined at each step of the architecture’s
iterations

These operations are quite time consuming and
usually cannot keep up with the rate of environmental
change

The performance of this iterative model-update-and-
evaluation does not scale well as robotic system
capabilities and goals expand

52

Software Architecture: Foundations, Theory, and Practice

Robotics Subsumption
Architecture

53

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Robotics Subsumption
Architecture (cont’d)
⚫ This architecture makes the fundamental architectural

decision to abandon complete world models and plans as the
central element of a robotic system

⚫ There is no explicit planning step between reading from
sensors and sending commands to actuators

⚫ Instead, there exist a number of independent components,
each encapsulating a specific behavior or robot skill

⚫ These components are arranged into successively more
complex layers that communicate through two operations

Inhibition, to prevent input to a component

Suppression, to replace the output of a component

54

Software Architecture: Foundations, Theory, and Practice

Robotics Subsumption
Architecture (cont’d)
⚫ Output from Skill C may cause the input from Skill A to

Skill B to be delayed by time t

⚫ Output from Skill C may override the output of Skill B
to Actuator 1 for time t

⚫ The subsumption architecture modularizes robot behavior and
functionality

Instead of behavior being represented in a single model
(as in SPA), independent components arranged in layers
each capture one facet of the overall behavior

Each of these components independently relies on sensory
inputs in order to trigger the actions it is supposed to
perform

Overall robot behavior doesn’t depend on a central plan
55

Software Architecture: Foundations, Theory, and Practice

Robotics Subsumption
Architecture (cont’d)
⚫ Consequently, subsumption architectures are more reactive in

nature, which means they have better performance than SPA

⚫ However, they also have the drawback that there is no
coherent architectural plan for layering

⚫ Specifically, there is no explicit guidance or support on how to
define different layers

Components are inserted into the data flow depending on
their specific task, without their position necessarily being
related to the layer within which they are positioned

Also, components belonging to the same layer are not
inserted in similar manners and positions

56

Software Architecture: Foundations, Theory, and Practice

Robotics: Three-Layer

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Robotics: Three-Layer (cont’d)

⚫ 3L architectures are characterized by the separation of robot
functionality into three layers

The Reactive Layer quickly reacts to events in the

environment with quick actions

The Sequencing Layer is responsible for linking

functionalities present in the reactive layer into more complex
behaviors

The Planning Layer performs slower long-term planning

⚫ 3L combine both reactive operations (as in subsumption
architectures) and long-term planning (as in SPA)

⚫ A challenge in 3L is understanding how to separate functionality into
the three layers

This separation depends on the robot’s intended role

58

Software Architecture: Foundations, Theory, and Practice

Wireless Sensor Networks

⚫ WSN are largely reactive applications

Their first task is to monitor the environment and report on its
state

⚫ They are used in a variety of domains

Medical systems, navigation, industrial automation, etc.

⚫ Benefits

Low installation costs, inexpensive maintenance, easy
reconfiguration

⚫ MIDAS WSN architecture applies three different architectural styles

The P2P portion is responsible for deployment activities,
including exchanging application-level components

The publish-subscribe portion is responsible for the routing and
processing of sensor data

The service-oriented portion supports generic services 59

Software Architecture: Foundations, Theory, and Practice

MIDAS Wireless Sensor Networks
Architecture

60

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Architectures for complex applications result from

Deep understanding of the application domain

Careful choice of constituent elements and styles based upon
experience and their known properties

Hybridization of these elements into a coherent solution

⚫ REST is a typical example of an architecture that creates a complex
style from the combination of elements from simpler styles as well
as coping with issues of latency, security, etc.

⚫ P2P architectures highlighted problems related to discovering peers,
searching for resources, and dealing with performance issues

⚫ Successful commercial architectures, such as Google, Akamai or
Skype, demonstrate that scalability need not be a serious problem

61

