
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Implementing
Architectures

Software Architecture

Chapter 9

Software Architecture: Foundations, Theory, and Practice

Objectives
⚫ Concepts

Implementation as a mapping problem
Architecture implementation frameworks
Evaluating frameworks
Relationships between middleware, frameworks,
component models
Building new frameworks
Concurrency and generative technologies
Ensuring architecture-to-implementation consistency

⚫ Examples
Different frameworks for pipe-and-filter
Different frameworks for the C2 style

⚫ Application
Implementing Lunar Lander in different frameworks

2

Software Architecture: Foundations, Theory, and Practice

Objectives
⚫ Concepts

Implementation as a mapping problem
Architecture implementation frameworks
Evaluating frameworks
Relationships between middleware, frameworks,
component models
Building new frameworks
Concurrency and generative technologies
Ensuring architecture-to-implementation consistency

⚫ Examples
Different frameworks for pipe-and-filter
Different frameworks for the C2 style

⚫ Application
Implementing Lunar Lander in different frameworks

3

Software Architecture: Foundations, Theory, and Practice

The Mapping Problem

⚫ Implementation is the one phase of software engineering that is not
optional

⚫ Architecture-based development provides a unique twist on the
classic problem

It becomes, in large measure, a mapping activity

⚫ Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

4

Design

Decisions

Implementation

Artifacts

Software Architecture: Foundations, Theory, and Practice

Common Element Mapping

⚫ Components and Connectors

Relevant design decisions partition the application’s functionality
into discrete elements of computation and communication

Programming environments provide mechanisms such as
packages, libraries, or classes that are used to partition
functionality in implementation

The challenge here is to maintain a mapping between the
partitions established by the architecture-level components and
connectors and the partitions established by the implementation-
level packages, libraries, classes, etc.

If this mapping is not consistent, then component boundaries
may break down causing architectural drift and erosion

5

Software Architecture: Foundations, Theory, and Practice

Common Element Mapping
(cont’d)

⚫ Interfaces

Architecture-level interfaces, such as method or
function signatures, are straightforward to map into
programming-language code

However, more complex interfaces, such as state
machines or protocols, are harder to map

6

Software Architecture: Foundations, Theory, and Practice

Common Element Mapping
(cont’d)

⚫ Configurations

At architecture level, configurations are often specified as linked
graphs of components and connectors, specifying interactivity
between them

The same interactions and topologies must be preserved in the
implementation

Some programming languages allow one module to refer to
another module by way of its interface (e.g., explicitly defined
interfaces in Java or function pointer tables in C) or support
dynamic discovery and connection between components at run
time

When such constructs are available, it is often possible to
generate implementation-level configurations directly from their
respective architecture-level configurations 7

Software Architecture: Foundations, Theory, and Practice

Common Element Mapping
(cont’d)

⚫ Design rationale

Often does not appear directly in implementation

Retained in comments and other documentation

⚫ Dynamic Properties (e.g., behavior)

Usually translate to algorithms of some sort (implementation
skeletons or even complete implementations)

However, formal behavioral specifications often lack bindings to
programming-language-level constructs

Mapping strategy depends on how the behaviors are specified
and what translations are available

Some behavioral specifications are more useful for generating
analyses or testing plans, rather than for implementations

8

Software Architecture: Foundations, Theory, and Practice

Common Element Mapping
(cont’d)

⚫ Non-Functional Properties

Extremely difficult to do since non-functional
properties are abstract and implementations are
concrete

Achieved through a combination of human-centric
strategies like inspections, reviews, focus groups,
user studies, beta testing, and so on

Therefore, refining non-functional properties into
functional design decisions, where possible, is
important

9

Software Architecture: Foundations, Theory, and Practice

One-Way vs. Round Trip Mapping

⚫ Architectures inevitably change after implementation begins

For maintenance purposes

Because of time pressures

Because of new information

⚫ Implementations can be a source of new information

We learn more about the feasibility of our designs when we
implement

We also learn how to optimize them

10

Design

Decisions

Implementation

Artifacts

Software Architecture: Foundations, Theory, and Practice

One-Way vs. Round Trip Mapping
(cont’d)

⚫ Keeping the two in sync is a difficult technical and
managerial problem

Places where strong mappings are not present are
often the first to diverge

⚫ One-way mappings are easier

Must be able to understand impact on implementation
for an architectural design decision or change

⚫ Two-way mappings require more insight

Must understand how a change in the implementation
impacts architecture-level design decisions

11

Software Architecture: Foundations, Theory, and Practice

One-Way vs. Round Trip Mapping
(cont’d)

⚫ One strategy: limit changes

If all system changes must be done to the architecture
first, only one-way mappings are needed

Works very well if many generative technologies in use

Often hard to control in practice; introduces process delays
and limits implementer freedom

⚫ Alternative: allow changes in either architecture or
implementation

Requires round-trip mappings and maintenance strategies

Can be assisted (to a point) with automated tools

12

Software Architecture: Foundations, Theory, and Practice

Architecture Implementation
Frameworks

⚫ Ideal approach: develop architecture based on a known
style, select technologies that provide implementation
support for each architectural element

13

Design

Decisions

Database

Software

Library

OO Class

Software Architecture: Foundations, Theory, and Practice

Architecture Implementation
Frameworks (cont’d)

⚫ This is rarely easy or trivial

Few programming languages have explicit support for
architecture-level constructs

Support infrastructure (libraries, operating systems,
etc.) also has its own sets of concepts, metaphors,
and rules

Selection of implementation technologies is often
driven by extrinsic factors, such as cost, maturity,
platform support, organizational culture, etc.

⚫ To mitigate these mismatches, we leverage an
architecture implementation framework

14

Software Architecture: Foundations, Theory, and Practice

Architecture Implementation
Frameworks (cont’d)

⚫ Definition: An architecture implementation framework
is a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.

15

Design

Decisions

Design

Decisions

Database

Software

Library

OO Class
F

r

a

m

e

w

o

r

k

Software Architecture: Foundations, Theory, and Practice

Canonical Example

⚫ The standard I/O (‘stdio’) framework in UNIX and

other operating systems

Perhaps the most prevalent framework in use today

Actually, a bridge between the pipe-and-filter style
(which is character-stream oriented and concurrent)
and procedural, nonconcurrent programming
languages, such as C

16

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

More on Frameworks

⚫ Frameworks are meant to assist developers in following a style

But generally, do not constrain developers from violating a style
if they really want to

⚫ Developing applications in a target style does not require a
framework

But if you follow good software engineering practices, you’ll
probably end up developing one anyway

⚫ Frameworks are generally considered as underlying infrastructure or
substrates from an architectural perspective

You won’t usually see the framework show up in an architectural
model, e.g., as a component or connector

However, frameworks often include implementations for
common components and connectors (e.g., a pipe connector or
an event bus) 17

Software Architecture: Foundations, Theory, and Practice

Same Style, Different Frameworks

⚫ For a given style, there is no one perfect architecture
framework

Different target implementation technologies induce
different frameworks

⚫ stdio (C) vs. iostream (C++) vs. java.io (Java)

⚫ Even in the same (style/target technology) groupings,
different frameworks exist due to different qualitative
properties of frameworks

java.io vs. java.nio (the latter also supports

buffering, better synchronization and fast data transfer)

Various C2-style frameworks in Java

18

Software Architecture: Foundations, Theory, and Practice

Evaluating Frameworks

⚫ Frameworks, like any software system, can vary widely
along nearly any quality dimension

⚫ Often for the same architectural style and the same
environment correspond many frameworks

⚫ Frameworks can be evaluated along a number of
dimensions

Platform support

⚫Once an architectural style has been identified, the
availability of architectural frameworks for a target
programming language and operating system
combination can be determined

19

Software Architecture: Foundations, Theory, and Practice

Evaluating Frameworks (cont’d)

⚫ Frameworks can be evaluated along a number of
dimensions (cont’d)

Fidelity (to the target architectural style)

⚫How much style-specific support is provided by the
framework?

◆Many frameworks are more general than one
target style or focus on a subset of the style
rules

⚫How much enforcement is (should be?) provided?

◆More faithful frameworks are better at avoiding
architectural drift/erosion but are more
complicated, bigger, or less efficient 20

Software Architecture: Foundations, Theory, and Practice

Evaluating Frameworks (cont’d)

⚫ Frameworks can be evaluated along a number of dimensions
(cont’d)

Matching Assumptions

⚫ Styles impose constraints on the target
architecture/application

⚫ Frameworks can induce constraints as well

◆ E.g., startup order, communication patterns …

⚫ To what extent does the framework make too many (or too
few) assumptions?

⚫ It is important to enumerate the assumptions a framework
makes and compare those with the assumptions made by
other components, toolkits, libraries, and environments with
which the application will interact

21

Software Architecture: Foundations, Theory, and Practice

Evaluating Frameworks (cont’d)

⚫ Frameworks can be evaluated along a number of dimensions
(cont’d)

Efficiency

⚫ Frameworks add a layer of functionality between the
application and the hardware it is run on

⚫ They also pervade target applications and can
potentially get involved in any interaction (e.g.,
mediate all communication between components or
dictate the concurrency policy)

⚫ Useful to run benchmarks; e.g., if a framework can
exchange 10,000 messages per minute, it is unrealistic
to expect that an application built with that framework
will be able to exchange 20,000 messages per minute 22

Software Architecture: Foundations, Theory, and Practice

Evaluating Frameworks (cont’d)

⚫ Frameworks can be evaluated along a number of dimensions
(cont’d)

Other quality considerations

⚫ Nearly every other software quality can affect framework
evaluation and selection

◆ Size

◆ Cost

◆ Ease of use

◆ Reliability

◆ Robustness

◆ Availability of source code

◆ Portability

◆ Long-term maintainability and support
23

Software Architecture: Foundations, Theory, and Practice

Middleware, Component Models,
and Application Frameworks
⚫ A spectrum of technologies exists to integrate software

components and provide services beyond those provided
by programming languages and operating systems

CORBA, COM/DCOM, JavaBeans, .NET, Java Message
Service (JMS), etc.

⚫ We will refer to these systems collectively as “middleware”

CORBA provides well-defined interfaces, portability,
remote procedure call…

JavaBeans provides a standardized packaging
framework (the bean) with new kinds of introspection
and binding, making it possible to compose beans more
easily

24

Software Architecture: Foundations, Theory, and Practice

Middleware and Component
Models (cont’d)

⚫ Indeed, architecture implementation frameworks are
forms of middleware

There’s a subtle difference in how they emerge and
develop

Middleware generally evolves based on a set of
services that the developers want to have available

⚫ E.g., CORBA: Support for language heterogeneity,
network transparency, portability

Frameworks generally evolve based on a particular
architectural style that developers want to use

⚫ Why is this important?

25

Software Architecture: Foundations, Theory, and Practice

Middleware and Component
Models (cont’d)

⚫ By focusing on services, middleware developers often
make other decisions that substantially impact architecture

⚫ E.g., in supporting network transparency and language
heterogeneity, CORBA uses RPC

But is RPC necessary for these services or is it just an
enabling technique?

⚫ In a very real way, middleware induces an architectural
style

CORBA induces the ‘distributed objects’ style

JMS induces a distributed implicit invocation style

⚫ Understanding these implications is essential for not having
major problems when the tail wags the dog! 26

Software Architecture: Foundations, Theory, and Practice

Resolving Mismatches

⚫ A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

⚫ A middleware is chosen first (or independently) and has undue
influence on the architectural style used

⚫ Strategies

Change or adapt the style

Change the middleware selected

Develop glue code

Use only a required subset of services
offered by the middleware

Hide the middleware in components/connectors

27

Use the middleware

as the basis for

a framework

Software Architecture: Foundations, Theory, and Practice

Using Middleware to Implement
Connectors

⚫ Many middleware packages provide services which are
effectively communication centric, allowing
heterogeneous components to communicate

⚫ It is possible to use the middleware to implement only
the architecture’s connectors, rather than the whole
architecture (thus, avoiding the middleware to corrupt
the architectural design)

⚫ Any connector capabilities not supported by the chosen
middleware are implemented directly within the
connectors

⚫ In this way, the connectors fulfil the architectural needs
rather than bowing to the middleware assumptions 28

Software Architecture: Foundations, Theory, and Practice

Hiding Middleware in Connectors

29

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation

Software Architecture: Foundations, Theory, and Practice

Building a New Framework

⚫ Occasionally, you need a new framework

The architectural style in use is novel

The architectural style is not novel but it is being
implemented on a platform for which no framework exists

The architectural style is not novel and frameworks exist for
the target platform, but the existing frameworks are
inadequate

⚫ Good framework development is extremely difficult

Frameworks pervade nearly every aspect of your system

Making changes to frameworks often means changing the
entire system

A task for experienced developers/architects
30

Software Architecture: Foundations, Theory, and Practice

New Framework Guidelines

⚫ Understand the target style first

Enumerate all the rules and constraints in concrete
terms

Provide example design patterns and corner cases

⚫ Limit the framework to the rules and constraints of the
style

Do not let a particular target application’s needs
creep into the framework

Including application-specific features (that are not
part of the style) in a framework, limits the reusability
of the framework and blurs the border between
application and framework

31

Software Architecture: Foundations, Theory, and Practice

New Framework Guidelines
(cont’d)

⚫ Choose the framework scope

A framework does not necessarily have to implement
all possible stylistic advantages (e.g., dynamism or
distribution)

What you choose to implement depends on how you
envision the framework to be reused for other apps

⚫ Avoid over-engineering

Don’t add capabilities simply because they are clever
or “cool”, especially if known target applications won’t
use them

These often add complexity and reduce performance
32

Software Architecture: Foundations, Theory, and Practice

New Framework Guidelines
(cont’d)

⚫ Limit overhead for application developers

Every framework induces some overhead (classes must
inherit from framework base classes, communication
mechanisms limited)

Try to put as little overhead as possible on framework
users

⚫ Develop strategies and patterns for legacy systems and
components

Almost every large application will need to include
elements that were not built to work with a target
framework

Develop strategies for incorporating and wrapping these
external resources

33

Software Architecture: Foundations, Theory, and Practice

Concurrency

⚫ Concurrency is one of the most difficult concerns to address
in implementation

Introduction of subtle bugs: deadlock, race conditions…

⚫ Concurrency is often an architecture-level concern

Decisions can be made at the architectural level

Done carefully, much concurrency management can be
embedded into the architecture framework

This can reduce (but not entirely eliminate) concurrency
generated bugs

⚫ Consider our earlier example, or how pipe-and-filter
architectures are made concurrent without direct user
involvement

34

Software Architecture: Foundations, Theory, and Practice

Generative Technologies

⚫ These technologies generate (parts of) implementations
directly from their designs

⚫ This is an attractive strategy for maintaining consistency
when software architectures are mapped to executable
code

⚫ However, it is generally not a comprehensive (or easy)
solution to implement properly

⚫ There are a number of generative strategies that can be
employed in architecture-centric development

35

Software Architecture: Foundations, Theory, and Practice

Generative Strategies

⚫ Generation of complete implementations of systems or elements

If it is feasible, it eliminates architectural drift and erosion, as
implementations are simply transformations of the architecture

But it requires extremely detailed models including behavioral
specifications

More feasible in domain-specific contexts

⚫ Generation of skeletons or interfaces

With detailed structure and interface specifications

Behavioral specifications can be implemented as finite-state
automata

⚫ Generation of compositions (e.g., glue code)

If a library of reusable component and connector
implementations is already available and systems are simply
composed from this library, architectural models can generate
the configurations, using where necessary glue code

36

Software Architecture: Foundations, Theory, and Practice

Maintaining Architecture-to-
Implementation Consistency

⚫ Strategies for maintaining one-way or round-trip mappings

Create and maintain traceability links from architectural
implementation elements

⚫ Explicit links in a database, in architectural models, in code
comments can all help with consistency checking

Make the architectural model part of the implementation

⚫ When the model changes, the implementation adapts
automatically

⚫ E.g., a description in a model of how components are to be
instantiated and connected can be used as an
implementation artifact

Generate some or all of the implementation from the
architecture

⚫ By generating component skeletons
37

Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Concepts
Implementation as a mapping problem
Architecture implementation frameworks
Evaluating frameworks
Relationships between middleware, frameworks,
component models
Building new frameworks
Concurrency and generative technologies
Ensuring architecture-to-implementation consistency

⚫ Examples
Different frameworks for pipe-and-filter
Different frameworks for the C2 style

⚫ Application
Implementing Lunar Lander in different frameworks

38

Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Concepts
Implementation as a mapping problem
Architecture implementation frameworks
Evaluating frameworks
Relationships between middleware, frameworks,
component models
Building new frameworks
Concurrency and generative technologies
Ensuring architecture-to-implementation consistency

⚫ Examples
Different frameworks for pipe-and-filter
Different frameworks for the C2 style

⚫ Application
Implementing Lunar Lander in different frameworks

39

Software Architecture: Foundations, Theory, and Practice

Recall Pipe-and-Filter

⚫ Components (‘filters’) organized linearly,
communicate through character-stream ‘pipes,’ which
are the connectors

⚫ Filters may run concurrently on partial data

⚫ In general, all input comes in through the left and all
output exits from the right

40

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Framework #1: stdio

⚫ Standard I/O framework used in C programming language

⚫ Each process is a filter

Reads input from standard input (aka ‘stdin’)

Writes output to standard output (aka ‘stdout’)

⚫ Also a third, unbuffered output stream called standard error
(‘stderr’) not considered here

Low and high level operations

⚫ getchar(…), putchar(…) move one character at a time

⚫ printf(…) and scanf(…) move and format entire strings

Different implementations may vary in details (buffering
strategy, etc.)

41

Software Architecture: Foundations, Theory, and Practice

Evaluating stdio

⚫ Platform support

Available with most, if
not all, implementations
of C programming
language

Operates somewhat
differently on OSes with
no concurrency (e.g.,
MS-DOS)

⚫ Fidelity

Good support for
developing P&F
applications, but no
restriction that apps have
to use this style

⚫ Matching assumptions

Filters are processes and
pipes are implicit. In-
process P&F applications
might require modifications

⚫ Efficiency

Whether filters make
maximal use of
concurrency is partially up
to filter implementations
and partially up to the OS

42

Software Architecture: Foundations, Theory, and Practice

Framework #2: java.io

⚫ Standard I/O framework used in Java language

⚫ Object-oriented

⚫ Can be used for in-process or inter-process P&F
applications

All stream classes derive from InputStream or
OutputStream

Distinguished objects (System.in and
System.out) for writing to process’ standard

streams

Additional capabilities (formatting, buffering) provided
by creating composite streams (e.g., a Formatting-
Buffered-InputStream)

43

Software Architecture: Foundations, Theory, and Practice

Evaluating java.io
⚫ Platform support

Available with all Java
implementations on many
platforms

Platform-specific
differences abstracted
away

⚫ Fidelity

Good support for
developing P&F
applications, but no
restriction that apps have
to use this style

⚫ Matching assumptions

Easy to construct intra- and
inter-process P&F
applications

Concurrency can be an
issue; many calls are
blocking

⚫ Efficiency

Users have fine-grained
control over, e.g., buffering

Very high efficiency
mechanisms (memory
mapped I/O, channels) not
available (but are in
java.nio)

44

Software Architecture: Foundations, Theory, and Practice

Recall the C2 Style

⚫ Layered style
with event-based
communication
over two-way
broadcast
buses

⚫ Strict rules on
concurrency,
dependencies,
and so on

⚫ Many frameworks
developed for
different languages;
focus on two
alternative Java
frameworks here 45

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Framework #1: Lightweight C2
Framework
⚫ 16 classes, 3000

lines of code

⚫ Components &
connectors extend
abstract base classes

⚫ Concurrency,
queuing handled at
individual
comp/conn level

⚫ Messages are
request or
notification objects

46

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Evaluating Lightweight C2
Framework
⚫ Platform support

Available with all Java
implementations on
many platforms

⚫ Fidelity

Assists developers with
many aspects of C2 but
does not enforce these
constraints

Leaves threading and
queuing policies up to
individual elements

⚫ Matching assumptions

Comp/conn main classes
must inherit from
distinguished base
classes

All messages must be in
dictionary form

⚫ Efficiency

Lightweight framework;
efficiency may depend on
threading and queuing
policy implemented by
individual elements

47

Software Architecture: Foundations, Theory, and Practice

Framework #2: Flexible C2
Framework

⚫ 73 classes, 8500
lines of code

⚫ Uses interfaces
rather than base
classes

⚫ Threading policy
for application
is pluggable

⚫ Message queuing policy is
also pluggable

48

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Framework #2: Flexible C2
Framework (cont’d)

49

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Evaluating Flexible C2 Framework

⚫ Platform support

Available with all Java
implementations on
many platforms

⚫ Fidelity

Assists developers with
many aspects of C2 but
does not enforce these
constraints

Provides several
alternative application-
wide threading and
queuing policies

⚫ Matching assumptions

Comp/conn main classes
must implement
distinguished interfaces

Messages can be any
serializable object

⚫ Efficiency

User can easily swap out
and tune threading and
queuing policies without
disturbing remainder of
application code

50

Software Architecture: Foundations, Theory, and Practice

Objectives
⚫ Concepts

Implementation as a mapping problem
Architecture implementation frameworks
Evaluating frameworks
Relationships between middleware, frameworks,
component models
Building new frameworks
Concurrency and generative technologies
Ensuring architecture-to-implementation consistency

⚫ Examples
Different frameworks for pipe-and-filter
Different frameworks for the C2 style

⚫ Application
Implementing Lunar Lander in different frameworks

51

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander

⚫ Framework: java.io

⚫ Implementing as a multi-process application

Each component (filter) will be a separate OS process

Operating system will provide the pipe connectors

⚫ Going to use just the standard input and output streams

Ignoring standard error

⚫ Ignoring good error handling practices and corner cases for
simplicity

52

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

⚫ A note on I/O:
Some messages sent from components are intended for output
to the console (to be read by the user)
⚫ These messages must be passed all the way through the

pipeline and output at the end
⚫ We will preface these with a ‘#’

Some messages are control messages meant to communicate
state to a component down the pipeline
⚫ These messages are intercepted by a component and

processed
⚫ We will preface these with a ‘%’

53

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

⚫ First: GetBurnRate component

Loops; on each loop:

⚫ Prompt user for new burn rate

⚫ Read burn rate from the user on standard input

⚫ Send burn rate to next component

⚫Quit if burn rate read < 0

54

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GetBurnRate Filter

55

//Import the java.io framework

import java.io.*;

public class GetBurnRate{

public static void main(String[] args){

//Send welcome message

System.out.println("#Welcome to Lunar Lander");

try{

//Begin reading from System input

BufferedReader inputReader =

new BufferedReader(new InputStreamReader(System.in));

//Set initial burn rate to 0

int burnRate = 0;

do{

//Prompt user

System.out.println("#Enter burn rate or <0 to quit:");

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GetBurnRate Filter (cont’d)

56

//Import the java.io framework

import java.io.*;

public class GetBurnRate{

public static void main(String[] args){

//Send welcome message

System.out.println("#Welcome to Lunar Lander");

try{

//Begin reading from System input

BufferedReader inputReader =

new BufferedReader(new InputStreamReader(System.in));

//Set initial burn rate to 0

int burnRate = 0;

do{

//Prompt user

System.out.println("#Enter burn rate or <0 to quit:");

. . .

. . .

//Read user response

try{

String burnRateString = inputReader.readLine();

burnRate = Integer.parseInt(burnRateString);

//Send user-supplied burn rate to next filter

System.out.println("%" + burnRate);

}

catch(NumberFormatException nfe){

System.out.println("#Invalid burn rate.");

}

}while(burnRate >= 0);

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

⚫ Second: CalcNewValues Component

Read burn rate from standard input

Calculate new game state including game-over

Send new game state to next component

⚫New game state is not sent in a formatted string;
that’s the display component’s job

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CalcBurnRate Filter

58

import java.io.*;

public class CalcNewValues{

public static void main(String[] args){

//Initialize values

final int GRAVITY = 2;

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

//Print initial values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CalcBurnRate Filter (cont’d)

59

import java.io.*;

public class CalcNewValues{

public static void main(String[] args){

//Initialize values

final int GRAVITY = 2;

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

//Print initial values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

. . .

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline

System.out.println(inputLine);

}

else if(inputLine.startsWith("%")){

//This is an input burn rate

try{

int burnRate = Integer.parseInt(inputLine.substring(1));

if(altitude <= 0){

System.out.println("#The game is over.");

}

else if(burnRate > fuel){

System.out.println("#Sorry, you don't" +

"have that much fuel.");

}

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CalcBurnRate Filter

60

import java.io.*;

public class CalcNewValues{

public static void main(String[] args){

//Initialize values

final int GRAVITY = 2;

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

//Print initial values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

. . .

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline

System.out.println(inputLine);

}

else if(inputLine.startsWith("%")){

//This is an input burn rate

try{

int burnRate = Integer.parseInt(inputLine.substring(1));

if(altitude <= 0){

System.out.println("#The game is over.");

}

else if(burnRate > fuel){

System.out.println("#Sorry, you don't" +

"have that much fuel.");

}

. . .

else{

//Calculate new application state

time = time + 1;

altitude = altitude - velocity;

velocity = ((velocity + GRAVITY) * 10 -

burnRate * 2) / 10;

fuel = fuel - burnRate;

if(altitude <= 0){

altitude = 0;

if(velocity <= 5){

System.out.println("#You have landed safely.");

}

else{

System.out.println("#You have crashed.");

}

}

}

//Print new values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

}

catch(NumberFormatException nfe){

}

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CalcBurnRate Filter

61

import java.io.*;

public class CalcNewValues{

public static void main(String[] args){

//Initialize values

final int GRAVITY = 2;

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

//Print initial values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

. . .

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline

System.out.println(inputLine);

}

else if(inputLine.startsWith("%")){

//This is an input burn rate

try{

int burnRate = Integer.parseInt(inputLine.substring(1));

if(altitude <= 0){

System.out.println("#The game is over.");

}

else if(burnRate > fuel){

System.out.println("#Sorry, you don't" +

"have that much fuel.");

}

. . .

else{

//Calculate new application state

time = time + 1;

altitude = altitude - velocity;

velocity = ((velocity + GRAVITY) * 10 -

burnRate * 2) / 10;

fuel = fuel - burnRate;

if(altitude <= 0){

altitude = 0;

if(velocity <= 5){

System.out.println("#You have landed safely.");

}

else{

System.out.println("#You have crashed.");

}

}

}

//Print new values

System.out.println("%a" + altitude);

System.out.println("%f" + fuel);

System.out.println("%v" + velocity);

System.out.println("%t" + time);

}

catch(NumberFormatException nfe){

}

. . .

}

}

}while((inputLine != null) && (altitude > 0));

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

⚫ Third: DisplayValues component

Read value updates from standard input

Format them for human reading and send them to
standard output

62

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

DisplayValues Filter

63

import java.io.*;

public class DisplayValues{

public static void main(String[] args){

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline with

//the pound-sign stripped off

System.out.println(inputLine.substring(1));

}

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

DisplayValues Filter

64

import java.io.*;

public class DisplayValues{

public static void main(String[] args){

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline with

//the pound-sign stripped off

System.out.println(inputLine.substring(1));

}

. . .

else if(inputLine.startsWith("%")){

//This is a value to display

if(inputLine.length() > 1){

try{

char valueType = inputLine.charAt(1);

int value = Integer.parseInt(inputLine.substring(2));

switch(valueType){

case 'a':

System.out.println("Altitude: " + value);

break;

case 'f':

System.out.println("Fuel remaining: " + value);

break;

case 'v':

System.out.println("Current Velocity: “ + value);

break;

case 't':

System.out.println("Time elapsed: " + value);

break;

}

}

catch(NumberFormatException nfe){

}

. . .

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

DisplayValues Filter

65

import java.io.*;

public class DisplayValues{

public static void main(String[] args){

try{

BufferedReader inputReader = new

BufferedReader(new InputStreamReader(System.in));

String inputLine = null;

do{

inputLine = inputReader.readLine();

if((inputLine != null) &&

(inputLine.length() > 0)){

if(inputLine.startsWith("#")){

//This is a status line of text, and

//should be passed down the pipeline with

//the pound-sign stripped off

System.out.println(inputLine.substring(1));

}

. . .

else if(inputLine.startsWith("%")){

//This is a value to display

if(inputLine.length() > 1){

try{

char valueType = inputLine.charAt(1);

int value = Integer.parseInt(inputLine.substring(2));

switch(valueType){

case 'a':

System.out.println("Altitude: " + value);

break;

case 'f':

System.out.println("Fuel remaining: " + value);

break;

case 'v':

System.out.println("Current Velocity: “ + value);

break;

case 't':

System.out.println("Time elapsed: " + value);

break;

}

}

catch(NumberFormatException nfe){

}

. . .

}

}

}

}while(inputLine != null);

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

⚫ Instantiating the application

java GetBurnRate | java CalcNewValues |

java DisplayValues

66

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

67

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

68

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

69

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Pipe and Filter
Lunar Lander (cont’d)

70

Software Architecture: Foundations, Theory, and Practice

Takeaways

⚫ java.io provides a number of useful facilities

Stream objects (System.in, System.out)

Buffering wrappers

⚫ OS provides some of the facilities

Pipes

Concurrency support

⚫ Note that this version of the application would not work if it
operated in batch-sequential mode

⚫ We had other communication mechanisms available, but did not use
them to conform to the P&F style

⚫ We had to develop a new (albeit simple) protocol to get the correct
behavior

71

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2

⚫ Framework: Lightweight
C2 framework

⚫ Each component has its
own thread of control

⚫ Components receive
requests or notifications
and respond with new
ones

⚫ Message routing follows
C2 rules

⚫ This is a real-time, clock-driven version of Lunar Lander
72

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2
(cont’d)

⚫ First: Clock component

⚫ Sends out a ‘tick’ notification
periodically

⚫ Does not respond to any
messages

73

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Clock Component

74

import c2.framework.*;

public class Clock extends ComponentThread{

public Clock(){

super.create("clock", FIFOPort.class);

}

public void start(){

super.start();

Thread clockThread = new Thread(){

public void run(){

//Repeat while the application runs

while(true){

//Wait for five seconds

try{

Thread.sleep(5000);

}

catch(InterruptedException ie){}

//Send out a tick notification

Notification n = new Notification("clockTick");

send(n);

}

}

};

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Clock Component

75

import c2.framework.*;

public class Clock extends ComponentThread{

public Clock(){

super.create("clock", FIFOPort.class);

}

public void start(){

super.start();

Thread clockThread = new Thread(){

public void run(){

//Repeat while the application runs

while(true){

//Wait for five seconds

try{

Thread.sleep(5000);

}

catch(InterruptedException ie){}

//Send out a tick notification

Notification n = new Notification("clockTick");

send(n);

}

}

};

clockThread.start();

}

protected void handle(Notification n){

//This component does not handle notifications

}

protected void handle(Request r){

//This component does not handle requests

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2
(cont’d)

⚫ Second: GameState

Component

⚫ Receives request to update
internal state

⚫ Emits notifications of new
game state on request
or when state changes

⚫ Does NOT compute new
state

Just a data store

76

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameState Component

77

import c2.framework.*;

public class GameState extends ComponentThread{

public GameState(){

super.create("gameState", FIFOPort.class);

}

//Internal game state and initial values

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

int burnRate = 0;

boolean landedSafely = false;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameState Component

78

import c2.framework.*;

public class GameState extends ComponentThread{

public GameState(){

super.create("gameState", FIFOPort.class);

}

//Internal game state and initial values

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

int burnRate = 0;

boolean landedSafely = false;

protected void handle(Request r){

if(r.name().equals("updateGameState")){

//Update the internal game state

if(r.hasParameter("altitude")){

this.altitude = ((Integer)r.getParameter("altitude")).intValue();

}

if(r.hasParameter("fuel")){

this.fuel = ((Integer)r.getParameter("fuel")).intValue();

}

if(r.hasParameter("velocity")){

this.velocity = ((Integer)r.getParameter("velocity")).intValue();

}

if(r.hasParameter("time")){

this.time = ((Integer)r.getParameter("time")).intValue();

}

if(r.hasParameter("burnRate")){

this.burnRate = ((Integer)r.getParameter("burnRate")).intValue();

}

if(r.hasParameter("landedSafely")){

this.landedSafely = ((Boolean)r.getParameter("landedSafely"))

.booleanValue();

}

//Send out the updated game state

Notification n = createStateNotification();

send(n);

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameState Component

79

import c2.framework.*;

public class GameState extends ComponentThread{

public GameState(){

super.create("gameState", FIFOPort.class);

}

//Internal game state and initial values

int altitude = 1000;

int fuel = 500;

int velocity = 70;

int time = 0;

int burnRate = 0;

boolean landedSafely = false;

protected void handle(Request r){

if(r.name().equals("updateGameState")){

//Update the internal game state

if(r.hasParameter("altitude")){

this.altitude = ((Integer)r.getParameter("altitude")).intValue();

}

if(r.hasParameter("fuel")){

this.fuel = ((Integer)r.getParameter("fuel")).intValue();

}

if(r.hasParameter("velocity")){

this.velocity = ((Integer)r.getParameter("velocity")).intValue();

}

if(r.hasParameter("time")){

this.time = ((Integer)r.getParameter("time")).intValue();

}

if(r.hasParameter("burnRate")){

this.burnRate = ((Integer)r.getParameter("burnRate")).intValue();

}

if(r.hasParameter("landedSafely")){

this.landedSafely = ((Boolean)r.getParameter("landedSafely"))

.booleanValue();

}

//Send out the updated game state

Notification n = createStateNotification();

send(n);

}

else if(r.name().equals("getGameState")){

//If a component requests the game state

//without updating it, send out the state

Notification n = createStateNotification();

send(n);

}

}

protected Notification createStateNotification(){

//Create a new notification comprising the

//current game state

Notification n = new Notification("gameState");

n.addParameter("altitude", altitude);

n.addParameter("fuel", fuel);

n.addParameter("velocity", velocity);

n.addParameter("time", time);

n.addParameter("burnRate", burnRate);

n.addParameter("landedSafely", landedSafely);

return n;

}

protected void handle(Notification n){

//This component does not handle notifications

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2
(cont’d)
⚫ Third: GameLogic

Component

⚫ Receives notifications of
game state changes

⚫ Receives clock ticks

On clock tick notification,
calculates new state
and sends request up

80

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameLogic Component

81

import c2.framework.*;

public class GameLogic extends ComponentThread{

public GameLogic(){

super.create("gameLogic", FIFOPort.class);

}

//Game constants

final int GRAVITY = 2;

//Internal state values for computation

int altitude = 0;

int fuel = 0;

int velocity = 0;

int time = 0;

int burnRate = 0;

public void start(){

super.start();

Request r = new Request("getGameState");

send(r);

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameLogic Component

82

import c2.framework.*;

public class GameLogic extends ComponentThread{

public GameLogic(){

super.create("gameLogic", FIFOPort.class);

}

//Game constants

final int GRAVITY = 2;

//Internal state values for computation

int altitude = 0;

int fuel = 0;

int velocity = 0;

int time = 0;

int burnRate = 0;

public void start(){

super.start();

Request r = new Request("getGameState");

send(r);

}

protected void handle(Notification n){

if(n.name().equals("gameState")){

if(n.hasParameter("altitude")){

this.altitude =

((Integer)n.getParameter("altitude")).intValue();

}

if(n.hasParameter("fuel")){

this.fuel =

((Integer)n.getParameter("fuel")).intValue();

}

if(n.hasParameter("velocity")){

this.velocity =

((Integer)n.getParameter("velocity")).intValue();

}

if(n.hasParameter("time")){

this.time =

((Integer)n.getParameter("time")).intValue();

}

if(n.hasParameter("burnRate")){

this.burnRate =

((Integer)n.getParameter("burnRate")).intValue();

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameLogic Component

83

import c2.framework.*;

public class GameLogic extends ComponentThread{

public GameLogic(){

super.create("gameLogic", FIFOPort.class);

}

//Game constants

final int GRAVITY = 2;

//Internal state values for computation

int altitude = 0;

int fuel = 0;

int velocity = 0;

int time = 0;

int burnRate = 0;

public void start(){

super.start();

Request r = new Request("getGameState");

send(r);

}

protected void handle(Notification n){

if(n.name().equals("gameState")){

if(n.hasParameter("altitude")){

this.altitude =

((Integer)n.getParameter("altitude")).intValue();

}

if(n.hasParameter("fuel")){

this.fuel =

((Integer)n.getParameter("fuel")).intValue();

}

if(n.hasParameter("velocity")){

this.velocity =

((Integer)n.getParameter("velocity")).intValue();

}

if(n.hasParameter("time")){

this.time =

((Integer)n.getParameter("time")).intValue();

}

if(n.hasParameter("burnRate")){

this.burnRate =

((Integer)n.getParameter("burnRate")).intValue();

}

}

else if(n.name().equals("clockTick")){

//Calculate new lander state values

int actualBurnRate = burnRate;

if(actualBurnRate > fuel){

//Ensure we don’t burn more fuel than we have

actualBurnRate = fuel;

}

time = time + 1;

altitude = altitude - velocity;

velocity = ((velocity + GRAVITY) * 10 –

actualBurnRate * 2) / 10;

fuel = fuel - actualBurnRate;

//Determine if we landed (safely)

boolean landedSafely = false;

if(altitude <= 0){

altitude = 0;

if(velocity <= 5){

landedSafely = true;

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GameLogic Component

84

import c2.framework.*;

public class GameLogic extends ComponentThread{

public GameLogic(){

super.create("gameLogic", FIFOPort.class);

}

//Game constants

final int GRAVITY = 2;

//Internal state values for computation

int altitude = 0;

int fuel = 0;

int velocity = 0;

int time = 0;

int burnRate = 0;

public void start(){

super.start();

Request r = new Request("getGameState");

send(r);

}

protected void handle(Notification n){

if(n.name().equals("gameState")){

if(n.hasParameter("altitude")){

this.altitude =

((Integer)n.getParameter("altitude")).intValue();

}

if(n.hasParameter("fuel")){

this.fuel =

((Integer)n.getParameter("fuel")).intValue();

}

if(n.hasParameter("velocity")){

this.velocity =

((Integer)n.getParameter("velocity")).intValue();

}

if(n.hasParameter("time")){

this.time =

((Integer)n.getParameter("time")).intValue();

}

if(n.hasParameter("burnRate")){

this.burnRate =

((Integer)n.getParameter("burnRate")).intValue();

}

}

else if(n.name().equals("clockTick")){

//Calculate new lander state values

int actualBurnRate = burnRate;

if(actualBurnRate > fuel){

//Ensure we don’t burn more fuel than we have

actualBurnRate = fuel;

}

time = time + 1;

altitude = altitude - velocity;

velocity = ((velocity + GRAVITY) * 10 –

actualBurnRate * 2) / 10;

fuel = fuel - actualBurnRate;

//Determine if we landed (safely)

boolean landedSafely = false;

if(altitude <= 0){

altitude = 0;

if(velocity <= 5){

landedSafely = true;

}

}

Request r = new Request("updateGameState");

r.addParameter("time", time);

r.addParameter("altitude", altitude);

r.addParameter("velocity", velocity);

r.addParameter("fuel", fuel);

r.addParameter("landedSafely", landedSafely);

send(r);

}

}

protected void handle(Request r){

//This component does not handle requests

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2
(cont’d)

⚫ Fourth: GUI Component

⚫ Reads burn rates from
user and sends them
up as requests

⚫ Receives notifications of
game state changes and
formats them to console

85

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GUI Component

86

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import c2.framework.*;

public class GUI extends ComponentThread{

public GUI(){

super.create("gui", FIFOPort.class);

}

public void start(){

super.start();

Thread t = new Thread(){

public void run(){

processInput();

}

};

t.start();

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GUI Component

87

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import c2.framework.*;

public class GUI extends ComponentThread{

public GUI(){

super.create("gui", FIFOPort.class);

}

public void start(){

super.start();

Thread t = new Thread(){

public void run(){

processInput();

}

};

t.start();

}

public void processInput(){

System.out.println("Welcome to Lunar Lander");

try{

BufferedReader inputReader = new BufferedReader(

new InputStreamReader(System.in));

int burnRate = 0;

do{

System.out.println("Enter burn rate or <0 to quit:");

try{

String burnRateString = inputReader.readLine();

burnRate = Integer.parseInt(burnRateString);

Request r = new Request("updateGameState");

r.addParameter("burnRate", burnRate);

send(r);

}

catch(NumberFormatException nfe){

System.out.println("Invalid burn rate.");

}

}while(burnRate >= 0);

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GUI Component

88

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import c2.framework.*;

public class GUI extends ComponentThread{

public GUI(){

super.create("gui", FIFOPort.class);

}

public void start(){

super.start();

Thread t = new Thread(){

public void run(){

processInput();

}

};

t.start();

}

public void processInput(){

System.out.println("Welcome to Lunar Lander");

try{

BufferedReader inputReader = new BufferedReader(

new InputStreamReader(System.in));

int burnRate = 0;

do{

System.out.println("Enter burn rate or <0 to quit:");

try{

String burnRateString = inputReader.readLine();

burnRate = Integer.parseInt(burnRateString);

Request r = new Request("updateGameState");

r.addParameter("burnRate", burnRate);

send(r);

}

catch(NumberFormatException nfe){

System.out.println("Invalid burn rate.");

}

}while(burnRate >= 0);

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

protected void handle(Notification n){

if(n.name().equals("gameState")){

System.out.println();

System.out.println("New game state:");

if(n.hasParameter("altitude")){

System.out.println(" Altitude: " + n.getParameter("altitude"));

}

if(n.hasParameter("fuel")){

System.out.println(" Fuel: " + n.getParameter("fuel"));

}

if(n.hasParameter("velocity")){

System.out.println(" Velocity: " + n.getParameter("velocity"));

}

if(n.hasParameter("time")){

System.out.println(" Time: " + n.getParameter("time"));

}

if(n.hasParameter("burnRate")){

System.out.println(" Burn rate: " + n.getParameter("burnRate"));

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

GUI Component

89

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import c2.framework.*;

public class GUI extends ComponentThread{

public GUI(){

super.create("gui", FIFOPort.class);

}

public void start(){

super.start();

Thread t = new Thread(){

public void run(){

processInput();

}

};

t.start();

}

public void processInput(){

System.out.println("Welcome to Lunar Lander");

try{

BufferedReader inputReader = new BufferedReader(

new InputStreamReader(System.in));

int burnRate = 0;

do{

System.out.println("Enter burn rate or <0 to quit:");

try{

String burnRateString = inputReader.readLine();

burnRate = Integer.parseInt(burnRateString);

Request r = new Request("updateGameState");

r.addParameter("burnRate", burnRate);

send(r);

}

catch(NumberFormatException nfe){

System.out.println("Invalid burn rate.");

}

}while(burnRate >= 0);

inputReader.close();

}

catch(IOException ioe){

ioe.printStackTrace();

}

}

protected void handle(Notification n){

if(n.name().equals("gameState")){

System.out.println();

System.out.println("New game state:");

if(n.hasParameter("altitude")){

System.out.println(" Altitude: " + n.getParameter("altitude"));

}

if(n.hasParameter("fuel")){

System.out.println(" Fuel: " + n.getParameter("fuel"));

}

if(n.hasParameter("velocity")){

System.out.println(" Velocity: " + n.getParameter("velocity"));

}

if(n.hasParameter("time")){

System.out.println(" Time: " + n.getParameter("time"));

}

if(n.hasParameter("burnRate")){

System.out.println(" Burn rate: " + n.getParameter("burnRate"));

}

if(n.hasParameter("altitude")){

int altitude =

((Integer)n.getParameter("altitude")).intValue();

if(altitude <= 0){

boolean landedSafely =

((Boolean)n.getParameter("landedSafely"))

.booleanValue();

if(landedSafely){

System.out.println("You have landed safely.");

}

else{

System.out.println("You have crashed.");

}

System.exit(0);

}

}

}

}

protected void handle(Request r){

//This component does not handle requests

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementing Lunar Lander in C2
(cont’d)

⚫ Lastly, main program

⚫ Instantiates and connects
all elements of the system

90

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Main Program

91

import c2.framework.*;

public class LunarLander{

public static void main(String[] args){

//Create the Lunar Lander architecture

Architecture lunarLander = new

SimpleArchitecture("LunarLander");

//Create the components

Component clock = new Clock();

Component gameState = new GameState();

Component gameLogic = new GameLogic();

Component gui = new GUI();

//Create the connectors

Connector bus = new ConnectorThread("bus");

//Add the components and connectors to the architecture

lunarLander.addComponent(clock);

lunarLander.addComponent(gameState);

lunarLander.addComponent(gameLogic);

lunarLander.addComponent(gui);

lunarLander.addConnector(bus);

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Main Program

92

import c2.framework.*;

public class LunarLander{

public static void main(String[] args){

//Create the Lunar Lander architecture

Architecture lunarLander = new

SimpleArchitecture("LunarLander");

//Create the components

Component clock = new Clock();

Component gameState = new GameState();

Component gameLogic = new GameLogic();

Component gui = new GUI();

//Create the connectors

Connector bus = new ConnectorThread("bus");

//Add the components and connectors to the architecture

lunarLander.addComponent(clock);

lunarLander.addComponent(gameState);

lunarLander.addComponent(gameLogic);

lunarLander.addComponent(gui);

lunarLander.addConnector(bus);

//Create the welds (links) between components and

//connectors

lunarLander.weld(clock, bus);

lunarLander.weld(gameState, bus);

lunarLander.weld(bus, gameLogic);

lunarLander.weld(bus, gui);

//Start the application

lunarLander.start();

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Takeaways

⚫ Here, the C2 framework provides most all of the
scaffolding we need

Message routing and buffering

How to format a message

Threading for components

Startup and instantiation

⚫ We provide the component behavior

Including a couple new threads of our own

⚫ We still must work to obey the style guidelines

Not everything is optimal: state is duplicated in
GameLogic, for example 93

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ It is imperative that, to the extent possible, the design decisions in
the architecture are reflected in the implemented system

⚫ Any conflicts or mismatches must be documented in order to
mitigate risks

Having conflicting information in the architecture and
implementation is more harmful than having an underspecified
architecture

⚫ The strongest mappings from architecture to implementation are
possible when architectural models become part of the system
implementation

This is easier to be achieved for structural design decisions but
more difficult to achieve for abstract design decisions, such as
any non-functional requirements

94

