
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Analysis (of
Software Architectures)

Software Architecture
Chapter 8

Software Architecture: Foundations, Theory, and Practice

What Is Architectural Analysis?

⚫ Architectural analysis is the activity of discovering
important system properties using the system’s
architectural models

Early, useful answers about relevant architectural
aspects

Available prior to system’s construction

⚫ Important to know

1. Which questions to ask

2. Why to ask them

3. How to ask them

4. How to ensure that they can be answered
2

Software Architecture: Foundations, Theory, and Practice

Informal Architectural Models
and Analysis

⚫ Helps architects get
clarification from
system customers
(and vice versa)

⚫ Helps managers
ensure project
scope is appropriate

⚫ Not as useful to
developers (no
information e.g.,
about component
interaction)

3

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Formal Architectural Models and
Analysis

⚫ Helps architects
determine
component
composability

⚫ Helps developers
with
implementation-
level decisions

⚫ Helps with locating
and selecting
appropriate OTS
components

⚫ Helps with
automated code
generation

⚫ Not as useful for
discussions with
non-technical
stakeholders

4

Component UserInterface

Port getValues

Port calculate

Computation

Connector Call

Role Caller =

Role Callee =

Glue =

Configuration LunarLander

Instances

DS : DataStore

C : Calculation

UI : UserInterface

CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS : Call

Attachments

C.getValues as CtoUIgetValues.Caller

DS.getValues as CtoUIgetValues.Callee

C.storeValues as CtoUIstoreValues.Caller

DS.storeValues as CtoUIstoreValues.Callee

UI.calculate as UItoC.Caller

C.calulate as UItoC.Callee

UI.getValues as UItoDS.Caller

DS.getValues as UItoDS.Callee

End LunarLander.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Concerns Relevant to Architectural
Analysis

⚫ Goals of analysis

⚫ Scope of analysis

⚫ Primary architectural concern being analyzed

⚫ Level of formality of associated architectural models

⚫ Type of analysis

⚫ Level of automation

⚫ System stakeholders interested in analysis

⚫ Applicable analysis techniques

5

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals

⚫ The four “C”s

Completeness

Consistency

Compatibility

Correctness

6

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Completeness
⚫ Completeness is both an external and an internal goal

⚫ It is external with respect to system requirements

Does it adequately capture all of a system’s key
functional and non-functional requirements?

Challenged by the complexity of large systems’
requirements and architectures

Challenged by the many notations used to capture
complex requirements as well as architectures

⚫ It is internal with respect to the architectural intent and
modeling notation

Have all elements been fully modeled in the notation?

Have all design decisions been properly captured?

⚫ In principle, internal completeness is easier to assess than
external completeness, and is amenable to automation 7

Software Architecture: Foundations, Theory, and Practice

A Partial, Formal Model of LL in
Rapide

⚫ The component
instances in the
architecture
portion of the
model must be
attached to one
another (see the
connect
statement)

⚫ A component’s out
action must be
connected to
another
component’s in
action

8

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

begin

(start or UpdateStatusDisplay) where \

($TurnsRemaining > 0) => \

if ($TurnsRemaining > 0) then \

TurnsRemaining := $TurnsRemaining - 1; \

DoSetBurnRate(); \

end if;;

NotifyNewValues => UpdateStatusDisplay();;

UpdateStatusDisplay where $TurnsRemaining == 0 \

=> Done();;

end UserInterface;

architecture lander() is

P1, P2 : Player;

C : Calculation;

D : DataStore;

connect

P1.DoSetBurnRate to C.SetBurnRate;

P2.DoSetBurnRate to C.SetBurnRate;

C.DoSetValues to D.SetValues;

D.NotifyNewValues to P1.NotifyNewValues();

D.NotifyNewValues to P2.NotifyNewValues();

end LunarLander;

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Consistency

⚫ Consistency is an internal property of an architectural
model

⚫ Ensures that different model elements do not
contradict one another

⚫ Dimensions of architectural consistency

Name

Interface

Behavior

Interaction

Refinement

9

Software Architecture: Foundations, Theory, and Practice

Name Consistency

⚫ Component and connector names

⚫ Component service names

⚫ May be non-trivial to establish at the architectural level

Multiple system elements/services with identical names

Loose coupling via publish-subscribe or asynchronous
event broadcast

⚫ Contrast this with attempting, say in Java, to access a
non-existent class or method which will result in a
compile-time error

Dynamically adaptable architectures

⚫ A component or service referred to in the architecture
initially may be unavailable but will be added later

10

Software Architecture: Foundations, Theory, and Practice

Interface Consistency

⚫ Encompasses name consistency

⚫ Also involves parameter lists in component services

⚫ A rich spectrum of choices at the architectural level

⚫ Example: the interface of a required service in a simple QueueClient
component, specified in some ADL may look like this:

ReqInt: getSubQ(Natural first, Natural last, Boolean remove)

returns FIFOQueue;

⚫ The above interface is intended to access a service that returns the
subset of a FIFOQueue between the specified first and last

indices

⚫ Depending on the value of remove, the original queue may remain

intact or the specified subqueue may be extracted from it

11

Software Architecture: Foundations, Theory, and Practice

Interface Consistency (cont’d)

⚫ The QueueServer component providing this service may export two
getSubQ interfaces as follows:

ProvInt1: getSubQ(Index first, Index last)

returns FIFOQueue;

ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)

returns Queue;

⚫ The three interfaces have no name inconsistency but the interfaces’
parameter lists and return types are not identical

The types of the first and last parameters in ReqInt and
ProvInt1 are different

ReqInt introduces a Boolean remove parameter, which does
not exist in ProvInt1

The return types of ProvInt2 and ReqInt are different 12

Software Architecture: Foundations, Theory, and Practice

Interface Consistency (cont’d)

⚫ Whether these differences result in actual interface inconsistencies
will depend on several factors

⚫ If QueueClient and QueueServer were objects in, say, Java, and
their interfaces denoted method invocations, the system might not
even compile

⚫ But modeling in software architectures is more flexible

If Natural is defined to be a subtype of Index, no type
mismatch will occur between ReqInt and ProvInt1

If the connector between QueueClient and QueueServer is a
direct procedure call, then the additional parameter in ReqInt
will create an inconsistency with ProvInt1; however, if the
connector is an event one, remove will be ignored

If Queue is not declared to be a subset of FIFOQueue,
ProvInt2 and ReqInt cannot interact with each other 13

Software Architecture: Foundations, Theory, and Practice

Behavioral Consistency

⚫ Names and interfaces of interacting components
requesting or providing services may match, but
behaviors need not

⚫ Example: subtraction
subtract(Integer x, Integer y) returns Integer;

Can we be sure what the subtract operation does?
We assume it subtracts two integer numbers but
what if it provides a calendar subtraction operation?
In this case, the result of subtract(427,27) will
not be 400 but 331 (subtraction of 27 days from April
27 gives March 31)

14

Software Architecture: Foundations, Theory, and Practice

Behavioral Consistency (cont’d)

⚫ Another example is related to when required and
provided interfaces have ‘preconditions’ which must hold
true before the functionality exported via the interface is
accessed and ‘postconditions’ which must hold true after
the functionality is exercised

Assume that QueueClient requires a front operation,
whose purpose is to return the first element of the
queue (without deleting it from the queue)
Assume also that QueueServer provides this
operation, and that the two corresponding interfaces
match; QueueClient’s required service behavior is:

precondition q.size ≥ 0;

postcondition ~q.size = q.size;

~ denotes the value of q after the operation has been
executed 15

Software Architecture: Foundations, Theory, and Practice

Behavioral Consistency (cont’d)

⚫ Therefore, QueueClient assumes that the queue may be
empty, and the front operation does not alter the queue

⚫ Now, QueueServer’s provided service behavior for the
front operation is defined as follows
precondition q.size ≥ 1;

postcondition ~q.size = q.size - 1;

Here, the precondition asserts that the queue will not
be empty and the postcondition specifies that front
will alter the size of the queue

⚫ Therefore, we have behavioral inconsistency between
QueueClient and QueueServer

16

Software Architecture: Foundations, Theory, and Practice

Interaction Consistency

17

⚫ Names, interfaces, and behaviors of interacting
components may match, yet they may still be unable
to interact properly

⚫ Example: QueueClient and QueueServer components

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Interaction Consistency (cont’d)

18

⚫ Interaction inconsistencies occur when a component’s
provided operations are accessed in a manner that violates
certain interaction constraints, such as the order in which
the component’s operations are to be accessed (the so-
called interaction protocol)

⚫ The previous diagram specified the interaction protocol of
QueueServer; here it is assumed that:

At least one element always be enqueued before an
attempt to dequeue an element can be made

No attempts to enqueue elements onto a full queue will
be made

⚫ A QueueClient component that does not adhere to these
constraints will cause an interaction inconsistency

Software Architecture: Foundations, Theory, and Practice

Refinement Consistency

⚫ Architectural models are refined during the design
process

⚫ A relationship must be maintained between higher- and
lower-level models

All elements of the higher-level model are preserved
in the lower-level one; i.e., no elements have been
lost in the refinement process

All design decisions and key properties at the higher-
level model are preserved in the lower-level one and
have not been omitted, changed or violated

No new design decisions at the lower-level model
violate existing design decisions 19

Software Architecture: Foundations, Theory, and Practice

Refinement Consistency (cont’d)

 20

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Refinement Consistency (cont’d)

⚫ The previous figure shows at the top the high-level
architecture of Linux and at the bottom the architecture
of the process scheduler subsystem

⚫ In the Linux architecture, Process Scheduler is modeled
as a component while the more elaborate description of
it at the bottom models it as a composite connector

⚫ So, Process Scheduler is maintained as a separate entity
between the two refinement levels

⚫ However, further analysis and additional information is
needed before it is determined whether the lower-level
representation of Process Scheduler as a connector
rather than a component is a refinement inconsistency 21

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Compatibility

⚫ Compatibility is an external property of an architectural
model

⚫ Ensures that the architectural model adheres to
guidelines and constraints of

A style

A reference architecture

An architectural standard

⚫ Reference architectures can be specified in ADLs, so
compatibility may be a precise and automatable process

⚫ Sometimes though it is not certain which particular style
definition is used

22

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Compatibility (cont’d)

23

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Compatibility (cont’d)

⚫ The previous figure depicts the Lunar Lander
architecture using the event-based style

⚫ However, a number of aspects of this modeling are not
clear:

The configuration may also adhere to C2’s principles,
such as substrate independence

SpaceCraft may in fact be a blackboard, in which

case the visual layout may be misleading

⚫ In such case, more information is needed to make sure
that compatibility is preserved

24

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals –
Correctness

⚫ Correctness is an external property of an architectural model

⚫ Ensures that

1. The architectural model fully realizes a system
specification

2. The system’s implementation fully realizes the
architecture

⚫ Inclusion of OTS elements impacts correctness

Systems may include structural elements, functionality,
and non-functional properties that are not part of the
architecture

The notion of fulfillment is key to ensuring architectural
correctness and based on the relative notion of
correctness

25

Software Architecture: Foundations, Theory, and Practice

Scope of Architectural Analysis

⚫ Component- and connector-level
⚫ Subsystem- and system-level
⚫ Data exchanged in a system or subsystem

Data structure
Data flow
Properties of data exchange

⚫ Architectures at different abstraction levels
⚫ Comparison of two or more architectures

Processing
Data
Interaction
Configuration
Non-functional properties 26

Software Architecture: Foundations, Theory, and Practice

Component- and Connector-Level
Analysis

⚫ The simplest type of component- and connector-level analysis
ensures that the given connector or component provides the
services expected of it

E.g., a component’s or connector’s interface can be inspected to
make sure that no expected services are missing; the code
below is part of modeling Data Store in xADLite and can be
established that it provides both the expected services
getValues and storeValues

27

Software Architecture: Foundations, Theory, and Practice

Component- and Connector-Level
Analysis (cont’d)

⚫ Checking simply name compatibility to ensure that a
component or connector provides an expected service is
not enough; e.g., this service may still be modeled with
incorrect interfaces

⚫ Also, semantics may have to be checked; e.g.,
getValues may not be modeled such that it accesses
Data Store to obtain the needed values, but instead
may request these values from the user, which
(although legitimate in principle) is not the intended
functionality of this service

⚫ Also, a connector may provide interaction services with
semantics that are different from the expected ones

E.g., a connector is expected to support
asynchronous invocation, but it has been modeled to
support synchronous invocation 28

Software Architecture: Foundations, Theory, and Practice

Subsystem- and System-Level
Analysis

⚫ Even if individual components and connectors have desired
properties, it is not necessarily the case that their composition
will result in a system that will behave as expected

⚫ Beware of the “honey-baked ham” syndrome: honey is fat
free, ham is sugar free, but a honey-baked ham is not fat and
sugar free

⚫ In certain cases, it is obvious that a composition of
components with some properties each will lead to a system
with combined properties from all components

E.g., combining a data encryption component with a data
compression one, results in a component which is both
secure and efficient

⚫ More often is the case where the interplay among
components results in interference of their properties

In some cases this may be desirable (e.g., sacrificing
efficiency for security), in other cases it is not 29

Software Architecture: Foundations, Theory, and Practice

Data Exchanged in the System or
Subsystem

⚫ In many large, distributed software systems large
amounts of data are processed, exchanged, and stored

⚫ In such systems, it is important to ensure that the
system’s data is properly modeled, implemented, and
exchanged among the structural elements (components,
connectors, etc.)

⚫ This involves assessing:
The structure of the data, such as typed versus
untyped or discrete versus streamed
The flow of the data through the system, such as
point-to-point versus broadcast
The properties of data exchange, such as consistency,
security and latency

30

Software Architecture: Foundations, Theory, and Practice

Data Exchanged in the System or
Subsystem (cont’d)

⚫ Consider a system consisting of a data-producer
component and two data-consumer components

⚫ The producer sends 1Mps and the consumers are able to
receive 2 Mbs and 500Kbs respectively

⚫ While the first consumer may wait idly 50% of its time to
retrieve additional data from the producer, the second
consumer may lose up to 50% of the produced data, as
it can process data at a rate that is only half of that of
the producer

⚫ This problem may be mitigated if the three components
are connected by means of a Multicast Connector which
supports buffering and possibly also additional
processing logic that will preserve the temporal order of
the data being received by the consumers; other
functionality may be included for security or efficiency 31

Software Architecture: Foundations, Theory, and Practice

Data Exchanged in the System or
Subsystem (cont’d)

32

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectures at Different
Abstraction Levels

⚫ Architects frequently address the critical system
requirements first, and then both introduce additional
elements into the architecture and refine the
architecture to include additional details

⚫ The next example shows on the left a high-level
architectural breakdown of a system and on the right a
refinement of the high-level architecture

⚫ The refinement shows the constituent components
comprising each one of the four high-level components
as well as a more detailed presentation of connector
involvement: e.g., only C1’s subcomponent C14 is
engaged in interactions with subcomponents of C3 and
C4

33

Software Architecture: Foundations, Theory, and Practice

Architectures at Different
Abstraction Levels (cont’d)

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectures at Different
Abstraction Levels (cont’d)

⚫ As we said before, the process of refinement may
introduce inconsistencies and incompatibilities

⚫ E.g., the architecture in the previous example may need
to abide by an architectural constrain stating that
interactions crossing the boundaries of the system’s
original four components must have a single target and
a single destination

⚫ This constrain is not satisfied in the previous example,
both in the case of C1’s interactions with C3, and C4’s
interactions with C2

C14 interacts with three C3 subcomponents
C42 interacts with two C2 subcomponents

35

Software Architecture: Foundations, Theory, and Practice

Comparison of Two or More
Architectures

⚫ In some cases it is important for architects to
understand the relationship between the architecture
they are interested in and a baseline architecture with
known properties

E.g., ensuring the compliance of a given system’s
architecture with a reference architecture

⚫ Such comparisons involve comparing, among others
Data storage capabilities provided by the components
Interactions as embodied in the connectors
Characteristics of the data exchange
Components’ and connectors’ compositions into the
system configuration
Sources of the non-functional properties exhibited by
the system 36

Software Architecture: Foundations, Theory, and Practice

Architectural Concern Being
Analyzed

⚫ Architectural analysis techniques are directed at different
facets of a given architecture

Structural characteristics of an architecture

Behavioral characteristics of the architectural
elements

Interaction characteristics of the architectural
elements

Non-functional characteristics exhibited by the
architecture

⚫ In practice, a given analysis technique, or suite of
techniques, will address more than one architectural
concern at a time

37

Software Architecture: Foundations, Theory, and Practice

Structural Characteristics

⚫ These concerns can help to determine whether an
architecture is well formed, and include

Connectivity among an architecture’s components and
connectors

Containment of lower-level architectural elements into
composite higher-level elements

Possible points of network distribution

Candidate physical architectures on which a given
system can be deployed

⚫ Structural concerns can reveal disconnections of
components or connectors from the rest of the system,
missing or not intended interactions, etc.

38

Software Architecture: Foundations, Theory, and Practice

Behavioral Characteristics

⚫ Consider the internal behaviors of individual components

⚫ Consider the architectural structure to assess composite
behaviors

⚫ If a system includes third-party components (e.g., OTS),
such a behavioral analysis may have to be restricted to
those components’ public interfaces

39

Software Architecture: Foundations, Theory, and Practice

Interaction Characteristics

⚫ May include the numbers and types of distinct software
connectors, and their values for different connector
dimensions

⚫ Interaction characteristics can help to establish whether
the architecture will actually be able to fulfil some of its
requirements

⚫ Analysis of interaction characteristics may also
encompass the interaction protocols for different system
components and internal behaviors specified for different
system connectors (see previous relevant examples)

⚫ Such analysis may reveal problems related to illegal
accessing of a component or possibility for deadlock 40

Software Architecture: Foundations, Theory, and Practice

Non-Functional Characteristics

⚫ They form a critical dimension of almost all software
systems

⚫ Typically cut across multiple components and connectors

⚫ Are often not properly understood, are qualitative in
nature, with definitions which are partial or informal

⚫ Their analysis is a formidable challenge to software
architects and architectural analysis techniques focusing
on these characteristics are scarce

41

Software Architecture: Foundations, Theory, and Practice

Level of Formality of Architectural
Models

⚫ Informal models

Typically captured in boxes-and-lines diagrams

Amenable to informal and manual analyses

More useful to non-technical stakeholders; e.g., a manager can
determine a project’s staffing needs

⚫ Semi-formal models (e.g., UML)

Try to strike a balance between precision and formality on the one
hand, with expressiveness and understandability on the other hand

Amenable to both manual and automated analysis

Useful to both technical and non-technical stakeholders

⚫ Formal models (e.g., Wright)

They have both a formal notation as well as a formal semantics

Inherently amenable to formal, automated analysis

Typically intended for a system’s technical stakeholders

Steep learning curve and scalability problems
42

Software Architecture: Foundations, Theory, and Practice

Type of Analysis
⚫ Static analysis

Involves inferring the properties of a software system from one or more
of its models, without actually executing those models (e.g., syntactic
analysis)

Can be automated (e.g., compilation) or manual (by inspection)

All architectural modeling notations are amenable to static analysis

⚫ Dynamic analysis

Involves actually executing or simulating the execution of a model of a
software system (e.g., state-transition diagrams)

⚫ Scenario-based analysis

For large and complex software systems, where it is often infeasible to
assert that a given property is valid for the entire system over all
possible states or executions, it is preferable to examine specific use
cases that represent the most important or common scenarios

Can be both static and dynamic

43

Software Architecture: Foundations, Theory, and Practice

Level of Automation

⚫ Manual

Requires significant human involvement and thus it is expensive

But it can be performed on models of varying levels of detail, rigor,
formality, and completeness or when multiple, potentially clashing
properties must be ensured in tandem

Architectural rationale can be taken into account

Analysis results are typically qualitative

⚫ Partially automated

Most ADLs are amenable to a partial automated analysis, e.g., syntactic
and/or semantic correctness related, say, to interconnectivity (e.g.,
xADL) or deadlock (e.g., Wright)

But other properties, such as availability, dependability, latency or
reliability cannot be analyzed automatically

⚫ Fully automated

Effectively combining partially automated techniques with human
intervention 44

Software Architecture: Foundations, Theory, and Practice

System (Analysis) Stakeholders

⚫ Architects

Take a global view of the architecture and are interested in
establishing all four Cs

May need to rely on all levels of architectural models at all levels
of scope and formality

Frequently they really on both manual and semi-automated
techniques

⚫ Developers

Often take a more limited view of the architecture (modules or
subsystems for which they are responsible)

Primarily interested in establishing consistency of their modules
with other parts of the system and they need not worry about
the architecture’s completeness

Typically, they prefer formal modeling paradigms
45

Software Architecture: Foundations, Theory, and Practice

System (Analysis) Stakeholders
(cont’d)
⚫ Managers

Typically interested in architectural completeness and
correctness

⚫ Customers

Is the development organization building the right system?

Is the development organization building the system right?

Typically favor understandability over formality

Interested in overall models and the system’s properties

⚫ Vendors

Typically, they sell technology (individual components or
connectors) rather than architecture

As such, they are interested primarily in composability of those
components and connectors as well as their compatibility with
certain standards and widely used reference architectures 46

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis in a Nutshell

47

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Analysis Techniques

⚫ Inspection- and review-based

⚫ Model-based

⚫ Simulation-based

48

Software Architecture: Foundations, Theory, and Practice

Architectural Inspections and
Reviews

⚫ Architectural models studied by human stakeholders for
specific properties

⚫ The stakeholders define analysis objective

⚫ Manual techniques

Can be expensive

⚫ Useful in the case of informal architectural descriptions

⚫ Useful in establishing “soft” system properties

E.g., scalability or adaptability

⚫ Able to consider multiple stakeholders’ objectives and
multiple architectural properties

49

Software Architecture: Foundations, Theory, and Practice

Inspections and Reviews in a
Nutshell

⚫ Analysis Goals – any

⚫ Analysis Scope – any

⚫ Analysis Concern – any, but particularly suited for non-
functional properties

⚫ Architectural Models – any, but must be geared to
stakeholder needs and analysis objectives

⚫ Analysis Types – mostly static and scenario-based

⚫ Automation Level – manual, human intensive

⚫ Stakeholders – any, except perhaps component vendors

50

Software Architecture: Foundations, Theory, and Practice

Example – ATAM

⚫ Stands for Architectural Trade-off Analysis Method

⚫ Human-centric process for identifying risks early on in
software design

⚫ Focuses specifically on four quality attributes (NFPs)

Modifiability

Security

Performance

Reliability

⚫ Reveals how well an architecture satisfies quality goals
and how those goals trade-off

51

Software Architecture: Foundations, Theory, and Practice

ATAM Process

52

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

ATAM Business Drivers

⚫ The system’s critical functionality

⚫ Any technical, managerial, economic, or political
constraints

⚫ The project’s business goals and context

⚫ The major stakeholders

⚫ The principal quality attribute (NFP) goals that impact
and shape the architecture

⚫ The quality attributes become a basis of eliciting a set of
representative scenarios that will help ensure the
system’s satisfaction of those attributes

⚫ There are three such scenario categories
53

Software Architecture: Foundations, Theory, and Practice

ATAM Scenarios

⚫ Use-case scenarios

Describe how the system is envisioned by the
stakeholders to be used

⚫ Growth scenarios

Describe planned and envisioned modifications to the
architecture

⚫ Exploratory scenarios

Try to establish the limits of architecture’s adaptability
by postulating major changes to

⚫ System’s functionality

⚫ Operational profiles

⚫ Underlying execution platforms

Scenarios are prioritized based on importance to
stakeholders 54

Software Architecture: Foundations, Theory, and Practice

ATAM Architecture

⚫ Technical constraints

Required hardware platforms, OS, middleware,
programming languages, and OTS functionality

⚫ Any other systems with which the system must interact

⚫ Architectural approaches that have been used to meet
the quality requirements

Sets of architectural design decisions employed to
solve a problem

Typically, architectural patterns and styles

The architectural approaches are used to elaborate
the architectural design decisions made for the
system

55

Software Architecture: Foundations, Theory, and Practice

ATAM Analysis

⚫ Key step in ATAM

⚫ Objective is to establish relationship between architectural
approaches and quality attributes

⚫ For each architectural approach a set of analysis questions
are formulated

Targeted at the approach and quality attributes in question

⚫ System architects and ATAM evaluation team work together
to answer these questions and identify

Risks → these are distilled into risk themes

Non-Risks

Sensitivity points

Trade-off points

⚫ Based on answers, further analysis may be performed 56

Software Architecture: Foundations, Theory, and Practice

ATAM in a Nutshell

Goals

Completeness

Consistency

Compatibility

Correctness`

Scope
Subsystem- and system-level

Data exchange

Concern Non-functional

Models
Informal

Semi-formal

Type Scenario-driven

Automation Level Manual

Stakeholders

Architects

Developers

Managers

Customers 57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Model-Based (Architectural)
Analysis

⚫ Analysis techniques that manipulate architectural description
to discover architectural properties

⚫ Tool-driven, hence potentially less costly

⚫ Typically, useful for establishing “hard” architectural
properties only

Unable to capture design intent and rationale

⚫ Usually focus on a single architectural aspect

E.g., syntactic correctness, deadlock freedom, adherence
to a style

⚫ Scalability may be an issue

⚫ Techniques typically used in tandem to provide more
complete answers

58

Software Architecture: Foundations, Theory, and Practice

Model-Based Analysis in a Nutshell

⚫ Analysis Goals – consistency, compatibility, internal
correctness

⚫ Analysis Scope – any

⚫ Analysis Concern – structural, behavioral, interaction,
and possibly non-functional properties

⚫ Architectural Models – semi-formal and formal

⚫ Analysis Types – static

⚫ Automation Level – partially and fully automated

⚫ Stakeholders – mostly architects and developers

59

Software Architecture: Foundations, Theory, and Practice

Model-Based Analysis in ADLs

⚫ Wright – uses CSP to analyze for deadlocks

⚫ Aesop – ensures style-specific constraints

⚫ MetaH and UniCon – support schedulability analysis via NFPs
such as component criticality and priority

⚫ ADL parsers and compilers – ensure syntactic and semantic
correctness

E.g., Rapide’s generation of executable architectural
simulations

⚫ Architectural constraint enforcement

E.g., Armani or UML’s OCL

⚫ Architectural refinement

E.g., SADL and Rapide 60

Software Architecture: Foundations, Theory, and Practice

ADLs’ Analysis Foci in a Nutshell

Goals

Consistency

Compatibility

Completeness (internal)

Scope

Component- and connector-level

Subsystem- and system-level

Data exchange

Different abstraction levels

Architecture comparison

Concern

Structural

Behavioral

Interaction

Non-functional

Models
Semi-formal

Formal

Type Static

Automation Level
Partially automated

Automated

Stakeholders

Architects

Developers

Managers

Customers
61

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

(Architectural) Reliability Analysis

⚫ Reliability is the probability that the system will perform its
intended functionality under specified design limits, without
failure

⚫ A failure is the occurrence of an incorrect output as a result of
an input value that is received, with respect to the specification

⚫ An error is a mental mistake made by the designer or
programmer

⚫ A fault or a defect is the manifestation of that error in the
system

An abnormal condition that may cause a reduction in, or loss
of, the capability of a component to perform a required
function

A requirements, design, or implementation flaw or deviation
from a desired or intended state

62

Software Architecture: Foundations, Theory, and Practice

Reliability Metrics

⚫ Time to failure

Mean time until a system fails after its last restoration

⚫ Time to repair

Mean time until a system is repaired after its last
failure

⚫ Time between failures

Mean time between two system failures

63

Software Architecture: Foundations, Theory, and Practice

Assessing Reliability at
Architectural Level

⚫ Challenged by unknowns

Operational profile

Failure and recovery history

⚫ Challenged by uncertainties

Multiple development scenarios

Varying granularity of architectural models

Different information sources about system usage

⚫ Architectural reliability values must be qualified by
assumptions made to deal with the above uncertainties

⚫ Reliability modeling techniques are needed that deal
effectively with uncertainties

E.g., Hidden Markov Models (HMMs)

64

Software Architecture: Foundations, Theory, and Practice

Architectural Reliability Analysis in a
Nutshell

Goals

Consistency

Compatibility

Correctness

Scope
Component- and connector-level

Subsystem- and system-level

Concern Non-functional

Models Formal

Type
Static

Scenario-based

Automation Level Partially automated

Stakeholders

Architects

Managers

Customers

Vendors
65

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Simulation-Based Analysis

⚫ Requires producing an executable system model

⚫ Simulation need not exhibit identical behavior to system
implementation

Many low-level system parameters may be
unavailable

⚫ It needs to be precise and not necessarily accurate

⚫ Some architectural models may not be amenable to
simulation

Typically require translation to a simulatable language

66

Software Architecture: Foundations, Theory, and Practice

Architectural and Simulation
Models

67

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Some models
such as UML
or Rapide
can be
simulated
directly;
others need
to be
mapped to
the
simulation
substrate

Software Architecture: Foundations, Theory, and Practice

Simulation-Based Analysis in a
Nutshell

⚫ Analysis Goals – any

⚫ Analysis Scope – any

⚫ Analysis Concern –behavioral, interaction, and non-
functional properties

⚫ Architectural Models – formal

⚫ Analysis Types – dynamic and scenario-based

⚫ Automation Level – fully automated; model mapping
may be manual

⚫ Stakeholders – any

68

Software Architecture: Foundations, Theory, and Practice

Example – XTEAM

⚫ eXtensible Tool-chain for Evaluation of Architectural Models

⚫ Targeted at mobile and resource-constrained systems

⚫ Combines two underlying ADLs

xADL and FSP (Finite State Processes)

⚫ Maps architectural description to Adevs (a discrete event
simulator)

An OTS event simulation engine

⚫ Implements different analyses via ADL extensions and a
model interpreter

Latency, memory utilization, reliability, energy
consumption

69

Software Architecture: Foundations, Theory, and Practice

Example XTEAM Model

70

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Example XTEAM Analysis

71

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

XTEAM in a Nutshell

Goals

Consistency

Compatibility

Correctness

Scope

Component- and connector-level

Subsystem- and system-level

Data exchange

Concern

Structural

Behavioral

Interaction

Non-functional

Models Formal

Type
Dynamic

Scenario-based

Automation Level Automated

Stakeholders

Architects

Developers

Managers

Customers

Vendors 72

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Architectural analysis is neither easy nor cheap

⚫ The benefits typically far outweigh the drawbacks

⚫ Early information about the system’s key characteristics is
indispensable

⚫ Multiple analysis techniques often should be used in
concert

⚫ “How much analyses?”

This is the key facet of an architect’s job

Too many will expend resources unnecessarily

Too few will carry the risk of propagating defects into
the final system

Wrong analyses will have both drawbacks
73

