
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Modeling

Software Architecture
Chapter 6

Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Concepts

What is modeling?

How do we choose what to model?

What kinds of things do we model?

How can we characterize models?

How can we break up and organize models?

How can we evaluate models and modeling notations?

⚫ Examples

Concrete examples of many notations used to model software
architectures

⚫ Revisiting Lunar Lander as expressed in different modeling
notations

2

Software Architecture: Foundations, Theory, and Practice

What is Architectural Modeling?

⚫ Recall that we have characterized architecture as the set of
principal design decisions made about a system

⚫ We can define models and modeling in those terms

An architectural model is an artifact that captures some or
all of the design decisions that comprise a system’s
architecture

Architectural modeling is the reification and
documentation of those design decisions

⚫ How we model is strongly influenced by the notations we
choose:

An architectural modeling notation is a language or
means of capturing design decisions

3

Software Architecture: Foundations, Theory, and Practice

How do We Choose What to
Model?

⚫ Architects and other stakeholders must make critical
decisions:

1. What architectural decisions and concepts should be
modeled

2. At what level of detail, and

3. With how much rigor or formality

⚫ These are cost/benefit decisions

The benefits of creating and maintaining an
architectural model must exceed the cost of doing
so

4

Software Architecture: Foundations, Theory, and Practice

Stakeholder-Driven Modeling

⚫ Stakeholders identify
aspects of the system
they are concerned
about

⚫ Stakeholders decide the
relative importance of
these concerns

⚫ Modeling depth should
roughly mirror the
relative importance of
concerns

5
From Maier and Rechtin, “The Art of Systems Architecting” (2000)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Basic Activities Behind
Stakeholder-Driven Modeling

1. Identify relevant aspects of the software to model

2. Roughly categorize them in terms of importance

3. Identify the goals of modeling for each aspect

1. Communication

2. Bug finding

3. Quality analysis

4. Generation of other artifacts

5. Etc.

4. Select modeling notations that will model the selected aspects at
appropriate levels of depth to achieve the modeling goals

5. Create the models

6. Use the models in a manner consistent with the modeling goals
6

Software Architecture: Foundations, Theory, and Practice

What do We Model?

⚫ Basic architectural elements

Components

Connectors

Interfaces

Configurations

Rationale – reasoning behind decisions

7

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Components

The architectural building blocks that encapsulate a
subset of the system’s functionality and/or data, and
restrict access to them via an explicitly defined
interface

⚫ Connectors

Architectural building blocks that affect and regulate
interactions among components

⚫ Interfaces

Points at which components and connectors interact
with the outside world–in general, other components
and connectors

8

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Configurations

A set of specific associations between the
components and connectors of a software system’s
architecture; such associations may be captured via
graphs whose nodes represent components and
connectors, and whose edges represent their
interconnectivity

⚫ Rationale

The information that explains why particular
architectural decisions were made, and what purpose
various elements serve

9

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Elements of the architectural style

Inclusion of specific basic elements (e.g.,
components, connectors, interfaces)

Component, connector, and interface types

Constraints on interactions

Behavioral constraints

Concurrency constraints

…

10

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Elements of the architectural style

Specific Elements

⚫ A style may prescribe that particular components, connectors
or interfaces be included in architectures or used in specific
situations

Component, Connector, and Interface Types

⚫ Specific types of elements may be permitted, required or
prohibited in the architecture

Constraints on Interaction

⚫ Temporal (“calling components may call init() before any

other method”)

⚫ Topological (“only components in the client layer are allowed
to invoke components in the server layer”)

⚫ Specify particular protocols (e.g., FTP or HTTP)
11

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Elements of the architectural style (cont’d)

Behavioral Constraints

⚫ They define how architectural elements behave
and can range from simple rules to complete
behavioral specifications of components

Concurrency Constraints

⚫ Constraints on which elements perform their
functions concurrently and how they synchronize
access to shared resources

12

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Static and Dynamic Aspects

Static aspects of a system do not change as a
system runs

⚫ E.g., topologies, assignment of
components/connectors to hosts, host and
network configurations or mapping of
architectural elements to code or binary
artifacts

Dynamic aspects do change as a system runs

⚫ E.g., state of individual components or
connectors over time (behavioral models) or
state of a data flow through a system over time

13

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Static and Dynamic Aspects (cont’d)

The static/dynamic distinction is often unclear

⚫ Consider a system whose topology is relatively
stable but changes several times during system
startup

⚫Or changes due to component failure, the use
of flexible connectors or architectural
dynamism

In such cases, models that capture both static and
dynamic system aspects may be employed

⚫ E.g., a static base topology may be
accompanied by a set of transitions that
describe a limited set of changes that may
occur to that topology during execution 14

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Important distinction between:

Models of dynamic aspects of a system (models
do not change)

Dynamic models (the models themselves change)

⚫ The former refer to properties of the system being
modeled

⚫ The latter refer to changes to the models themselves

⚫ A model of a dynamic aspect of a system describes
how the system changes as it executes

⚫ A dynamic model actually changes itself

15

Software Architecture: Foundations, Theory, and Practice

What do We Model? (cont’d)

⚫ Functional and non-functional aspects of a system

Functional aspects relate to what a system does

⚫ “The system prints medical records”

Non-functional aspects relate to how a system
performs its functions

⚫ “The system prints medical records quickly and
confidentially”

⚫ Architectural models tend to be functional, but like
rationale it is often important to capture non-functional
decisions even if they cannot be automatically or
deterministically interpreted or analyzed

16

Software Architecture: Foundations, Theory, and Practice

Important Characteristics of
Models

⚫ Ambiguity

A model is ambiguous if it is open to more than one
interpretation

⚫ Accuracy and Precision

Different, but often conflated concepts

⚫ A model is accurate if it is correct, conforms to
fact, or deviates from correctness within
acceptable limits

⚫ A model is precise if it is specific, detailed, and
exact

17

Software Architecture: Foundations, Theory, and Practice

Accuracy vs. Precision

18

Inaccurate and

imprecise:

incoherent or

contradictory

assertions

Accurate but

imprecise:

ambiguous or

shallow

assertions

Inaccurate but

precise:

detailed

assertions that

are wrong

Accurate and

precise:

detailed

assertions that

are correct

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Views and Viewpoints

⚫ Generally, it is not feasible to capture everything we want to
model in a single model or document

The model would be too big, complex, and confusing

⚫ So, we create several coordinated models, each capturing a
subset of the design decisions

Generally, the subset is organized around a particular
concern or other selection criteria

⚫ We call the subset-model a ‘view’ and the concern (or criteria)
a ‘viewpoint’

⚫ A view is a set of design decisions related by a
common concern (or set of concerns)

⚫ A viewpoint defines the perspective from which a view
is taken 19

Software Architecture: Foundations, Theory, and Practice

Views and Viewpoints Example

20

Deployment view of a 3-tier

application

Deployment view of a

Lunar Lander system

Both instances of the

deployment viewpoint

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Commonly-Used Viewpoints

⚫ Logical Viewpoints

Capture the logical (often software) entities in a
system and how they are interconnected

⚫ Physical Viewpoints

Capture the physical (often hardware) entities in a
system and how they are interconnected

⚫ Deployment Viewpoints

Capture how logical entities are mapped onto physical
entities

21

Software Architecture: Foundations, Theory, and Practice

Commonly-Used Viewpoints
(cont’d)

⚫ Concurrency Viewpoints

Capture how concurrency and threading will be
managed in a system

⚫ Behavioral Viewpoints

Capture the expected behavior of (parts of) a
system

⚫ It is also possible for multiple views to be taken from
the same viewpoint for the same system

One view might show only top-level components,
while another view might show additionally
subcomponents and internal structure

22

Software Architecture: Foundations, Theory, and Practice

Commonly-Used Viewpoints
(cont’d)

⚫ Importance of views and viewpoints

They provide a way to limit presented information
to a cognitively manageable subset of the
architecture

They display related concepts simultaneously

They can be tailored to the needs of specific
stakeholders

They can be used to display the same data at
various levels of abstraction

23

Software Architecture: Foundations, Theory, and Practice

Consistency Among Views

⚫ Views can contain overlapping and related design
decisions

There is the possibility that the views can thus
become inconsistent with one another

⚫ Views are consistent if the design decisions they contain
are compatible

Views are inconsistent if two views assert design
decisions that cannot simultaneously be true

⚫ Inconsistency is usually but not always indicative of
problems

Temporary inconsistencies are a natural part of
exploratory design

Inconsistencies cannot always be fixed
24

Software Architecture: Foundations, Theory, and Practice

Example of View Inconsistency

25

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Example of View Inconsistency
(cont’d)

⚫ The previous figure shows two hypothetical views of a
distributed LL system

⚫ The physical view (a) depicts three hosts (Ground
System, Command Module Computer, Lander
Computer)

⚫ However, the deployment view (b) shows components
assigned to only two hosts (Ground System, Lunar
Lander)

⚫ This inconsistency is relatively easy to spot; other, more
subtle inconsistencies (e.g., between different behavioral
specifications of an architecture) are harder to detect
and more costly to fix 26

Software Architecture: Foundations, Theory, and Practice

Common Types of Inconsistencies

⚫ Direct inconsistencies

When two views assert directly contradictory
propositions

⚫ E.g., “The system runs on two hosts” and “the
system runs on three hosts”

⚫ Refinement inconsistencies

High-level (more abstract) and low-level (more
concrete) views of the same parts of a system conflict

⚫ E.g., a “top level” structural view contains a
component that is absent from a structural view
that includes subarchitectures

27

Software Architecture: Foundations, Theory, and Practice

Common Types of Inconsistencies
(cont’d)

⚫ Static vs. dynamic aspect inconsistencies

Dynamic aspects (e.g., behavioral specifications)
conflict with static aspects (e.g., topologies)

E.g., a message sequence chart view might depict
the handling of messages by a component that is
not contained in the structural view

⚫ Dynamic vs. dynamic aspect inconsistencies

Different descriptions of dynamic aspects of a
system conflict

E.g., a message sequence chart depicts a specific
interaction between components that is not
allowed by the relevant behavioral specifications

28

Software Architecture: Foundations, Theory, and Practice

Common Types of Inconsistencies
(cont’d)

⚫ Functional vs. non-functional inconsistencies

When a non-functional property of a system
prescribed by a non-functional view is not met by
the design expressed by functional views

E.g., a non-functional view of a client-server
system may express that the system should be
robust, but the physical view of the system may
show only a single server with no evidence of
failure-handling machinery

29

Software Architecture: Foundations, Theory, and Practice

Evaluating Modeling Approaches

⚫ Scope and purpose

What does the technique help you model?

What does it not help you model?

⚫ Basic elements

What are the basic elements or concepts (the ‘atoms’)
that are modeled?

How are they modeled?

⚫ Style

To what extent does the approach help you model
elements of the underlying architectural style?

Is the technique bound to one particular style or
family of styles? 30

Software Architecture: Foundations, Theory, and Practice

Evaluating Modeling Approaches
(cont’d)

⚫ Static and dynamic aspects

What static and dynamic aspects of an architecture
does the approach help you model?

⚫ Dynamic modeling

To what extent does the approach support models
that change as the system executes?

⚫ Non-functional aspects

To what extent does the approach support (explicit)
modeling of non-functional aspects of architecture?

31

Software Architecture: Foundations, Theory, and Practice

Evaluating Modeling Approaches
(cont’d)
⚫ Ambiguity

How does the approach help you to avoid (or
allow) ambiguity?

⚫ Accuracy

How does the approach help you to assess the
correctness of models?

⚫ Precision

At what level of detail can various aspects of the
architecture be modeled?

32

Software Architecture: Foundations, Theory, and Practice

Evaluating Modeling Approaches
(cont’d)

⚫ Viewpoints

Which viewpoints are supported by the approach?

⚫ View Consistency

How does the approach help you assess or
maintain consistency among different views
expressed in a model?

33

Software Architecture: Foundations, Theory, and Practice

Surveying Modeling Approaches

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

34

Software Architecture: Foundations, Theory, and Practice

Surveying Modeling Approaches
(cont’d)
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL 35

Software Architecture: Foundations, Theory, and Practice

Natural Language

⚫ Spoken/written languages such as English

⚫ Advantages
Highly expressive

Accessible to all stakeholders

Good for capturing non-rigorous or informal architectural
elements like rationale and non-functional requirements

Plentiful tools available (word processors and other text editors)

⚫ Disadvantages
Ambiguous, non-rigorous, non-formal

Often verbose

Cannot be effectively processed or analyzed by
machines/software

36

Software Architecture: Foundations, Theory, and Practice

37

Lunar Lander in Natural Language

“The Lunar Lander application consists of three components: a data store

component, a calculation component, and a user interface component.

The job of the data store component is to store and allow other components

access to the height, velocity, and fuel of the lander, as well as the current

simulator time.

The job of the calculation component is to, upon receipt of a burn-rate

quantity, retrieve current values of height, velocity, and fuel from the data

store component, update them with respect to the input burn-rate, and store

the new values back. It also retrieves, increments, and stores back the

simulator time. It is also responsible for notifying the calling component of

whether the simulator has terminated, and with what state (landed safely,

crashed, and so on).

The job of the user interface component is to display the current status of

the lander using information from both the calculation and the data store

components. While the simulator is running, it retrieves the new burn-rate

value from the user, and invokes the calculation component.”

Software Architecture: Foundations, Theory, and Practice

Natural Language Example
(cont’d)

⚫ The structure of the components and their dependencies
is explicitly stated, as well as a description of their
behaviors, inputs, outputs, and general responsibilities

⚫ However, the description does not explain the algorithm
the calculation component uses, the particular formats of
the data values, anything about the connectors between
the components, or what the user interface should look
like

⚫ The ambiguity of the natural language may result in the
generation of many different implementations that
satisfy this architectural description and they may not all
function identically 38

Software Architecture: Foundations, Theory, and Practice

Related Alternatives

⚫ Ambiguity can be reduced and rigor can be increased
through the use of techniques like ‘statement templates,’
e.g.:

The (name) interface on (name) component takes (list-of-
elements) as input and produces (list-of-elements) as output
(synchronously | asynchronously)

This can help to make rigorous data easier to read and interpret,
but such information is generally better represented in a more
compact format

39

Software Architecture: Foundations, Theory, and Practice

Natural Language Evaluation

40

⚫ Scope and purpose
Capture design decisions in
prose form

⚫ Basic elements
Any concepts required

⚫ Style
Can be described by using
more general language

⚫ Static & Dynamic Aspects
Any aspect can be modeled

⚫ Dynamic Models
No direct tie to
implemented/ running
system

⚫ Non-Functional Aspects
Expressive vocabulary
available (but no way to
verify)

⚫ Ambiguity
Plain natural language tends to
be ambiguous; statement
templates and dictionaries help

⚫ Accuracy
Manual reviews and inspection

⚫ Precision
Can add text to describe any
level of detail

⚫ Viewpoints
Any viewpoint (but no specific
support for any particular
viewpoint)

⚫ Viewpoint consistency
Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice

Informal Graphical Modeling

⚫ General diagrams produced in tools like PowerPoint and
OmniGraffle

⚫ Advantages
Can be aesthetically pleasing

Size limitations (e.g., one slide, one page) generally constrain
complexity of diagrams

Extremely flexible due to large symbolic vocabulary

⚫ Disadvantages
Ambiguous, non-rigorous, non-formal

⚫ But often treated otherwise

Cannot be effectively processed or analyzed by
machines/software

41

Software Architecture: Foundations, Theory, and Practice

Lunar Lander as an Informal
Graphical Model

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Informal Graphical Model Example
(cont’d)

⚫ The particular symbology used is not directly explained–
there is no underlying semantic model through which to
interpret this diagram

⚫ The intended interpretation is that the 3D boxes are
software components, the arrows indicate invocation
dependencies, and the round rectangles are commentary
on the intended behavior and responsibilities of the
components

⚫ Somewhat better than the natural language model, in
that the componentization of the system and the
component dependencies are immediately obvious, and
the behaviors are visually connected to the components43

Software Architecture: Foundations, Theory, and Practice

Related Alternatives

⚫ Some diagram editors (e.g., Microsoft Visio) can be
extended with semantics through scripts and other
additional programming

Generally, ends up somewhere in between a custom
notation-specific editor and a generic diagram editor

Limited by extensibility of the tool

⚫ PowerPoint Design Editor (Goldman, Balzer) was an
interesting project that attempted to integrate semantics
into PowerPoint

44

Software Architecture: Foundations, Theory, and Practice

Informal Graphical Evaluation

45

⚫ Scope and purpose
Arbitrary diagrams
consisting of symbols and
text

⚫ Basic elements
Geometric shapes, splines,
clip-art, text segments

⚫ Style
In general, no support

⚫ Static & Dynamic Aspects
Any aspect can be modeled,
but no semantics behind
models

⚫ Dynamic Models
Rare, although APIs to
manipulate graphics exist

⚫ Non-Functional Aspects
With natural language
annotations

⚫ Ambiguity
Can be reduced through use of
rigorous symbolic
vocabulary/dictionaries

⚫ Accuracy
Manual reviews and inspection

⚫ Precision
Up to modeler; generally, canvas
is limited in size (e.g., one ‘slide’)

⚫ Viewpoints
Any viewpoint (but no specific
support for any particular
viewpoint)

⚫ Viewpoint consistency
Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice

UML – the Unified Modeling
Language

⚫ 13 loosely-interconnected notations called diagrams (what in
this course we call ‘viewpoints’) that capture static and dynamic
aspects of software-intensive systems

⚫ Advantages

Support for a diverse array of viewpoints focused on many
common software engineering concerns

Ubiquity improves comprehensibility

Extensive documentation and tool support from many
vendors

⚫ Disadvantages

Needs customization through profiles to reduce ambiguity

Difficult to assess consistency among views

Difficult to capture foreign concepts or views
46

Software Architecture: Foundations, Theory, and Practice

UML – the Unified Modeling
Language (cont’d)

⚫ The figure below shows two components with a dashed arrow
showing a ‘dependency’: Calculation is dependent on Data
Store; however, it is unclear what kind of dependency this is

Some element of Calculation calls Data Store?

Instances of Calculation contain a pointer to an instance
of Data Store?

Calculation requires Data Store to compile?

Calculation can send messages to Data Store?

Calculation’s implementation has a method that takes an
instance of Data Store’s implementation as a parameter?

47

Software Architecture: Foundations, Theory, and Practice

UML – the Unified Modeling
Language (cont’d)

⚫ UML offers stereotypes or tagged values to provide more info

⚫ In the figure below, the stereotypes used give more details
about the dependency between the two components

⚫ In the first case, Calculation imports Data Store and in
the second Calculation calls Data Store

⚫ But what exactly does it mean to “import” or “call”?

48

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML

49

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

⚫ The component diagram of LL might look like the one in
the previous slide and it looks very similar to the informal
graphical diagram

⚫ However, this diagram has a rigorous syntax and some
underlying semantics

⚫ The symbols used are documented in the UML
specification

⚫ Informal boxes in the graphical diagram are replaced by
the well-defined ‘component’ symbol

⚫ However, the diagram is not completely unambiguous

What kind of components are involved?

When and how are calls among components made?
50

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

51

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

⚫ The behavior of the system might be specified using
a UML statechart diagram, as the one in the previous
slide

⚫ The start state is indicated by the plain dark circle
and the end state is indicated by the outlined dark
circle

⚫ Each rounded rectangle represents a state of the
system

⚫ Arrows represent transitions between the states

⚫ The conditions in square brackets indicate guards
that constrain when state transitions may occur

52

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

⚫ According to this statechart:

The LL system begins by displaying the lander
state

Then, either the simulation is done, or the system
will request a burn rate from the user

The user may choose to end the program or
provide a burn rate and, if this is valid, the
program will then calculate the new simulation
state and display it

The loop will repeat until the simulation is done

53

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

⚫ The statechart provides a more rigorous and formal
description of the system behavior than either the
natural language or informal graphical architecture
description

⚫ However, it leaves out an important detail:

Which components perform the specified actions?

⚫ This is captured in another type of a UML diagram,
the sequence diagram

54

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

55

Software Architecture: Foundations, Theory, and Practice

Lunar Lander in UML (cont’d)

⚫ The sequence diagram depicts a particular sequence
of operations that can be performed by the LL
components

⚫ User Interface gets a burn rate from the user,
Calculation retrieves the state of the lander from
the Data Store and updates it, and then returns
the termination state of the lander to User
Interface

⚫ The previous three diagrams capture both the static
(structural) and dynamic (behavioral) aspects of the
system

⚫ Are these different views consistent with each other?56

Software Architecture: Foundations, Theory, and Practice

UML Evaluation

57

⚫ Scope and purpose
Diverse array of design
decisions in 13 viewpoints

⚫ Basic elements
Multitude – states, classes,
objects, composite nodes…

⚫ Style
Through (OCL) constraints

⚫ Static & Dynamic Aspects
Some static diagrams (class,
package), some dynamic
(state, activity)

⚫ Dynamic Models
Rare; depends on the
environment

⚫ Non-Functional Aspects
No direct support; natural-
language annotations

⚫ Ambiguity
Many symbols are interpreted
differently depending on context;
profiles reduce ambiguity

⚫ Accuracy
Well-formedness checks,
automatic constraint checking,
ersatz tool methods, manual

⚫ Precision
Up to modeler; wide flexibility

⚫ Viewpoints
Each diagram type represents a
viewpoint; more can be added
through overloading/profiles

⚫ Viewpoint consistency
Constraint checking, ersatz tool
methods, manual

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

58

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

59

Software Architecture: Foundations, Theory, and Practice

Early Architecture Description
Languages

⚫ Early ADLs proliferated in the 1990s and explored ways
to model different aspects of software architecture

Many emerged from academia

Focus on structure: components, connectors,
interfaces, configurations

Focus on formal analysis

None used actively in practice today, tool support has
waned

⚫ Ideas influenced many later systems, though

60

Software Architecture: Foundations, Theory, and Practice

Darwin

⚫ General purpose language with graphical and textual
visualizations focused on structural modeling of systems

⚫ Advantages

Simple, straightforward mechanism for modeling structural
dependencies

Interesting way to specify repeated elements through
programmatic constructs

Can be modeled in pi-calculus for formal analysis

Can specify hierarchical (i.e., composite) structures

⚫ Disadvantages

Limited usefulness beyond simple structural modeling

No notion of explicit connectors

⚫ Although components can act as connectors
61

Software Architecture: Foundations, Theory, and Practice

LL in Darwin

62

component DataStore{

provide landerValues;

}

component Calculation{

require landerValues;

provide calculationService;

}

component UserInterface{

require calculationService;

require landerValues;

}

component LunarLander{

inst

U: UserInterface;

C: Calculation;

D: DataStore;

bind

C.landerValues -- D.landerValues;

U.landerValues -- D.landerValues;

U.calculationService -- C.calculationService;

}

Canonical Textual Visualization Graphical Visualization

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Darwin (cont’d)

⚫ Each component is described with explicit provided and
required interfaces

⚫ The overall application structure is defined using a top-
level component with an internal structure

I.e., the LL application itself is a component
containing the UserInterface, Calculation, and
DataStore components

63

Software Architecture: Foundations, Theory, and Practice

Programmatic Darwin Constructs

64

component WebServer{

provide httpService;

}

component WebClient{

require httpService;

}

component WebApplication(int numClients){

inst S: WebServer;

array C[numClients]: WebClient;

forall k:0..numClients-1{

inst C[k] @ k;

bind C[k].httpService -- S.httpService;

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Many declarative ADLs simply enumerate all the components
and bindings in an architecture one by one

• Darwin, in addition, supports the creation of configurations
using programming-language-like constructs, such as loops

• In the above code the number of clients is parameterizable

Software Architecture: Foundations, Theory, and Practice

Darwin Evaluation

65

⚫ Scope and purpose
Modeling software structure

⚫ Basic elements
Components, interfaces,
configurations, hierarchy

⚫ Style
Limited support through
programmatic constructs

⚫ Static & Dynamic Aspects
Mostly static structure; some
additional support for
dynamic aspects through
lazy and dynamic
instantiation/binding

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Rigorous, but structural
elements can be interpreted in
many ways

⚫ Accuracy
Pi-calculus analysis

⚫ Precision
Modelers choose appropriate
level of detail through hierarchy

⚫ Viewpoints
Structural viewpoints

⚫ Viewpoint consistency
N/A

Software Architecture: Foundations, Theory, and Practice

Rapide
⚫ Language and tool-set for exploring dynamic properties of systems

of components that communicate through events

⚫ Advantages

Unique and expressive language for describing asynchronously
communicating components

Architecture specifications in Rapide are interesting because they
are executable

Tool-set supports simulation of models and graphical
visualization of event traces

⚫ Disadvantages

No natural or explicit mapping to implemented systems

High learning curve

Important tool support is difficult to run on modern machines

66

Software Architecture: Foundations, Theory, and Practice

POSETs

⚫ The power of Rapide comes from its organization of
events into partially ordered sets, called POSETs

⚫ Rapide components work concurrently, emitting and
responding to events

⚫ There are causal relationships between some events,
e.g., if a component receives event A and responds by
emitting event B, then there is a causal relationship from
A→B

67

Software Architecture: Foundations, Theory, and Practice

POSETs (cont’d)
⚫ Causal relationships between two events A and B in

Rapide exist when any of the following are true:

A and B are generated by the same process

A process is triggered by A and then generates B

A process generated A and then assigns to a variable
v, another process reads v and then generates B

A triggers a connection that generates B

A precedes C which precedes B (transitive closure)

⚫ As a program runs, its components generate a stream of
events over time and some of these events will be
causally related by one of the above relationships

68

Software Architecture: Foundations, Theory, and Practice

POSETs (cont’d)

69

Software Architecture: Foundations, Theory, and Practice

POSETs (cont’d)

⚫ In the previous figure, the left portion shows a raw
event stream over time: components in some software
architecture modeled in Rapide send events A, B, C, D, E
at times t0 through t4, respectively

These events are temporally ordered but not causally
ordered

⚫ The right portion of the figure shows the causal ordering
of these events; in fact, there are two partial orders:

A, B, and D

C and E

⚫ We call these orderings partial because not all the
events are ordered with respect to one another

70

Software Architecture: Foundations, Theory, and Practice

LL in Rapide

71

type DataStore is interface

action in SetValues();

out NotifyNewValues();

behavior

begin

SetValues => NotifyNewValues();;

end DataStore;

type Calculation is interface

action in SetBurnRate();

out DoSetValues();

behavior

action CalcNewState();

begin

SetBurnRate => CalcNewState(); DoSetValues();;

end Calculation;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Rapide (cont’d)

72

type Player is interface

action out DoSetBurnRate();

in NotifyNewValues();

behavior

TurnsRemaining : var integer := 1;

action UpdateStatusDisplay();

action Done();

begin

(start or UpdateStatusDisplay) where \

($TurnsRemaining > 0) => \

if ($TurnsRemaining > 0) then \

$TurnsRemaining := $TurnsRemaining-1; \

DoSetBurnRate(); \

end if;;

NotifyNewValues => UpdateStatusDisplay();;

UpdateStatusDisplay where $TurnsRemaining==0 \

=> Done();;

end Player

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Rapide (cont’d)

73

begin

(start or UpdateStatusDisplay) where \

($TurnsRemaining > 0) => \

if ($TurnsRemaining > 0) then \

TurnsRemaining := $TurnsRemaining - 1; \

DoSetBurnRate(); \

end if;;

NotifyNewValues => UpdateStatusDisplay();;

UpdateStatusDisplay where $TurnsRemaining == 0 \

=> Done();;

end UserInterface;

architecture lander() is

P1, P2 : Player;

C : Calculation;

D : DataStore;

connect

P1.DoSetBurnRate to C.SetBurnRate;

P2.DoSetBurnRate to C.SetBurnRate;

C.DoSetValues to D.SetValues;

D.NotifyNewValues to P1.NotifyNewValues();

D.NotifyNewValues to P2.NotifyNewValues();

end LunarLander;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Rapide (cont’d)

⚫ The Rapide description looks on the surface similar to a
Darwin one but it also includes behavioral information

⚫ In this version of LL there are two players

⚫ The code starts by defining the types of available
components and their interfaces

⚫ Each interface has a number of events it can receive
(in) and send out (out)

⚫ In addition, each component has a behavioral
specification, defining how it reacts to different events

74

Software Architecture: Foundations, Theory, and Practice

LL in Rapide (cont’d)

⚫ At the end of the specification, the system’s structure is
defined

First components that implement the different
interface types

Then links between the component interfaces

⚫ The players start off by sending an updated burn rate
and then they wait for the display to be updated with
the new status before making another move

⚫ In this version of the game, players are limited to three
moves, in order for the game not to continue indefinitely
as there is no other end-game condition

75

Software Architecture: Foundations, Theory, and Practice

LL in Rapide (cont’d)
⚫ The Calculation component waits for a
SetBurnerRate event

⚫ When it receives it, it will fire the internal event
CalcNewState and then fire a DoSetValues message
to the DataStore component to update the game state

⚫ When the game state is updated, DataStore fires a
NotifyNewValues event which causes the players’

displays to be updated, thus prompting them to make
their next moves

⚫ Now let’s see how the events are generated in such a
program

76

Software Architecture: Foundations, Theory, and Practice

Simulation Output With One Player

77

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Simulation Output With One Player
(cont’d)
⚫ The only counterintuitive aspect of the previous graph is

the group of ‘start’ events that are fired initially

⚫ As one of Rapide’s primary focus areas is concurrent
architectures, it attempts to trigger simultaneous
processing by loading the simulation with a number of
‘start’ events at the beginning

⚫ Other than this, this trace of events for a one-player
version of the game looks reasonable

⚫ Let us now see how events are generated for a two-
player version of the game

78

Software Architecture: Foundations, Theory, and Practice

Simulation Output With Two
Players

79

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Simulation Output With Two
Players (cont’d)
⚫ By examining the causality arrows, we observe that the

two pathways are intertwined

Requests are getting intermingled, since there is no
locking or transaction support in this design

⚫ Also, we see the fan-out of display updates at the
bottom

Each user’s display is getting updated twice–once for
their own move and once for the other player

This means that both (or all in case of more than
two) players will try to move at the same time

⚫ So, this specific modeling of LL is buggy; without the
Rapide events’ graphs it would be difficult to detect 80

Software Architecture: Foundations, Theory, and Practice

Rapide Evaluation

81

⚫ Scope and purpose
Interactions between
components communicating
with events

⚫ Basic elements
Structures, components/
interfaces, behaviors

⚫ Style
N/A

⚫ Static & Dynamic Aspects
Static structure and dynamic
behavior co-modeled

⚫ Dynamic Models
Some tools provide limited
animation capabilities

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Well-defined semantics limit
ambiguity

⚫ Accuracy
Compilers check syntax,
simulators can be used to check
semantics although simulation
results are non-deterministic and
non-exhaustive

⚫ Precision
Detailed behavioral modeling
possible

⚫ Viewpoints
Single structural/behavioral
viewpoint

⚫ Viewpoint consistency
N/A

Software Architecture: Foundations, Theory, and Practice

Wright

⚫ An ADL that specifies structure and formal behavioral
specifications for interfaces between components and
connectors

⚫ Advantages

Structural specification similar to Darwin or Rapide

Formal interface specifications can be translated
automatically into CSP and analyzed with tools

⚫ Can detect subtle problems e.g., deadlock

⚫ Disadvantages

High learning curve

No direct mapping to implemented systems

Addresses a small number of system properties relative
to cost of use 82

Software Architecture: Foundations, Theory, and Practice

LL in Wright

83

Component DataStore

Port getValues (behavior specification)

Port storeValues (behavior specification)

Computation (behavior specification)

Component Calculation

Port getValues (behavior specification)

Port storeValues (behavior specification)

Port calculate (behavior specification)

Computation (behavior specification)

Component UserInterface

Port getValues (behavior specification)

Port calculate (behavior specification)

Computation (behavior specification)

Connector Call

Role Caller =

Role Callee =

Glue =

§[]Callerreturncall →→

§[]Calleereturncall →→

§[]

..[]

..

GluereturnCallerreturnCallee

GluecallCalleecallCaller

→→

→→

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Wright (cont’d)

84

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Configuration LunarLander

Instances

DS : DataStore

C : Calculation

UI : UserInterface

CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS : Call

Attachments

C.getValues as CtoUIgetValues.Caller

DS.getValues as CtoUIgetValues.Callee

C.storeValues as CtoUIstoreValues.Caller

DS.storeValues as CtoUIstoreValues.Callee

UI.calculate as UItoC.Caller

C.calulate as UItoC.Callee

UI.getValues as UItoDS.Caller

DS.getValues as UItoDS.Callee

End LunarLander.

Software Architecture: Foundations, Theory, and Practice

LL in Wright (cont’d)

⚫ The structural aspects of the Wright specification of LL
resemble those we have seen earlier in UML and Darwin

⚫ The distinguishing feature here is the CSP-based formal
specifications of components/connectors interfaces and
behavior

⚫ The value of these specifications is that properties such as
freedom from deadlock can be analyzed, something
difficult or impossible to detect if a system is implemented
in a traditional programming language

85

Software Architecture: Foundations, Theory, and Practice

Wright Evaluation

86

⚫ Scope and purpose
Structures, behaviors, and
styles of systems composed
of components & connectors

⚫ Basic elements
Components, connectors,
interfaces, attachments,
styles

⚫ Style
Supported through
predicates over instance
models

⚫ Static & Dynamic Aspects
Static structural models
annotated with behavioral
specifications

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Well-defined semantics limit
ambiguity

⚫ Accuracy
Wright models can be translated
into CSP for automated analysis

⚫ Precision
Detailed behavioral modeling
possible

⚫ Viewpoints
Single structural/behavioral
viewpoint plus styles

⚫ Viewpoint consistency
Style checking can be done
automatically

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

87

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

88

Software Architecture: Foundations, Theory, and Practice

Domain- and Style-Specific ADLs

⚫ Notations we have surveyed thus far have been generically
applicable to many types of software systems; however, some ADLs
are domain-specific or style-specific, or at least optimized for
describing architectures in a particular domain or style

⚫ These types of ADLs are important for several reasons:

Their scope is better tailored to stakeholder needs, since they
target a particular group of them

They are able to leave out unnecessary details and excessively
verbose constructs because there is little need for genericity;
assumptions about the domain or style can be directly encoded
into the ADL semantics

⚫ E.g., if a particular style mandates the use of a single kind of
connector, there is no need to have a notion of connector in
this ADL; users assume that all links use this connector 89

Software Architecture: Foundations, Theory, and Practice

Koala

⚫ Darwin-inspired notation for specifying product lines of
embedded consumer-electronics devices

⚫ Advantages

Advanced product-line features let you specify many
systems in a single model

Direct mapping to implemented systems promotes
design and code reuse

⚫ Disadvantages

Limited to structural specification with additional
focus on interfaces

90

Software Architecture: Foundations, Theory, and Practice

LL in Koala

91Single system Product line of two systems

interface IDataStore{

void setAltitude(int altitudeInMeters);

int getAltitude();

void setBurnRate(int newBurnRate);

int getBurnRate();

...

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Koala Evaluation

92

⚫ Scope and purpose
Structures and interfaces of
product lines of component-
based systems

⚫ Basic elements
Components, interfaces,
elements for variation
points: switches, diversity
interfaces, etc.

⚫ Style
Product lines might be seen
as very narrow styles

⚫ Static & Dynamic Aspects
Static structure only

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Close mappings to implementation
limit ambiguity

⚫ Accuracy
Close mappings to
implementations should reveal
problems

⚫ Precision
Structural decisions are fully
enumerated but other aspects left
out

⚫ Viewpoints
Structural viewpoint with explicit
points of variation

⚫ Viewpoint consistency
N/A

Software Architecture: Foundations, Theory, and Practice

Weaves

⚫ An architectural style and notation for modeling systems
of small-grain ‘tool fragments’ that communicate through
data flows of objects

⚫ Can be seen as a variant of the pipe-and-filter style with
three significant differences:

Weaves tool fragments process object streams
instead of pipe-and-filter’s byte streams

Weaves connectors are explicitly sized object queues,
whereas pipe-and-filter connectors are implicit pipes

Weaves tools can have multiple inputs and outputs,
whereas pipe-and-filter components have one input
and one output 93

Software Architecture: Foundations, Theory, and Practice

Weaves (cont’d)

⚫ Advantages

Extremely optimized notation

⚫ Even simpler than Darwin diagrams

Close mapping to implemented systems

⚫ Disadvantages

Addresses structure and data flows only

94

Software Architecture: Foundations, Theory, and Practice

Weaves Example

95

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Weaves Example (cont’d)

⚫ The component Tool Fragment 1 outputs a stream of
objects to an explicit queue connector Q1, which forks the
stream and forwards the objects to both Tool Fragment 2
and Tool Fragment 3

⚫ The notation is graphical and minimalistic

Components are represented by shadowed boxes and
queue connectors are represented by plain boxes

Configurations are expressed using directed arrows
connecting components and connectors

⚫ This minimal notation is adequate to serve as a description
notation for the Weaves style and the semantic interpretation
of the few elements are provided by the style itself

96

Software Architecture: Foundations, Theory, and Practice

LL in Weaves

97

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Weaves(cont’d)

⚫ Although the Weaves model is almost identical to the Darwin
one, the meaning is different because a component in
Weaves is not the same as a component in Darwin

⚫ The components in Weaves don’t communicate by means of
request-response procedure calls, but instead through
streams of objects

⚫ One notable difference from other models is the explicit
presence of return channels

The fact that a request travels from User Interface to
Calculation (through Q1) doesn’t imply that a response

comes back along the same path; this response’s path
must be explicitly specified and have its own queue (Q2)

98

Software Architecture: Foundations, Theory, and Practice

Augmenting Weaves

⚫ Weaves diagrams do not capture the protocol or kinds of
data that flow across component boundaries

⚫ This could be rectified through, for example, additional
natural language or more formal (e.g., CSP) protocol
specifications

99

The connection from User Interface to Calculation (via Q1) carries objects

that include a burn-rate and instruct the calculation component to calculate a new

Lander state.

The connection from Calculation to User Interface (via Q2) indicates when

the calculation is complete and also includes the termination state of the application.

The connections from User Interface and Calculation to Data Store (via

Q3) carry objects that either update or query the state of the Lander.

The connections back to User Interface and Calculation from Data Store

(via Q4) carry objects that contain the Lander state, and are sent out whenever the

state of the Lander is updated.

Software Architecture: Foundations, Theory, and Practice

Weaves Evaluation

100

⚫ Scope and purpose
Structures of components
and connectors in the
Weaves style

⚫ Basic elements
Components, queues,
directed interconnections

⚫ Style
Weaves style implicit

⚫ Static & Dynamic Aspects
Static structure only

⚫ Dynamic Models
N/A, although there is a 1-1
correspondence between
model and implementation
elements

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Meanings of Weaves elements
are well-defined although
important elements (e.g.,
protocols) are subject to
interpretation

⚫ Accuracy
Syntactic (e.g., structural) errors
easy to identify

⚫ Precision
Structural decisions are fully
enumerated but other aspects
left out

⚫ Viewpoints
Structural viewpoint

⚫ Viewpoint consistency
N/A

Software Architecture: Foundations, Theory, and Practice

AADL: The Architecture Analysis
& Design Language

⚫ Notation and tool-set for modeling hardware/software systems,
particularly embedded and real-time systems

⚫ Advantages

Allows detailed specification of both hardware and software
aspects of a system

This detail is what gives AADL its power and analyzability

Automated analysis tools check interesting end-to-end properties
of system

⚫ Disadvantages

Verbose; large amount of detail required to capture even simple
systems

Emerging tool support and UML profile support

101

Software Architecture: Foundations, Theory, and Practice

LL in AADL

102

data lander_state_data

end lander_state_data;

bus lan_bus_type

end lan_bus_type;

bus implementation lan_bus_type.ethernet

properties

Transmission_Time => 1 ms .. 5 ms;

Allowed_Message_Size => 1 b .. 1 kb;

end lan_bus_type.ethernet;

system calculation_type

features

network : requires bus access

lan_bus.calculation_to_datastore;

request_get : out event port;

response_get : in event data port lander_state_data;

request_store : out event port lander_state_data;

response_store : in event port;

end calculation_type;

system implementation calculation_type.calculation

subcomponents

the_calculation_processor :

processor calculation_processor_type;

the_calculation_process : process

calculation_process_type.one_thread;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in AADL (cont’d)

103

connections

bus access network -> the_calculation_processor.network;

event data port response_get ->

the_calculation_process.response_get;

event port the_calculation_process.request_get ->

request_get;

event data port response_store ->

the_calculation_process.response_store;

properties

Actual_Processor_Binding => reference

the_calculation_processor applies to

the_calculation_process;

end calculation_type.calculation;

processor calculation_processor_type

features

network : requires bus access

lan_bus.calculation_to_datastore;

end calculation_processor_type;

process calculation_process_type

features

request_get : out event port;

response_get : in event data port lander_state_data;

request_store : out event data port lander_state_data;

response_store : in event port;

end calculation_process_type;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in AADL (cont’d)

104

thread calculation_thread_type

features

request_get : out event port;

response_get : in event data port lander_state_data;

request_store : out event data port lander_state_data;

response_store : in event port;

properties

Dispatch_Protocol => periodic;

end calculation_thread_type;

process implementation calculation_process_type.one_thread

subcomponents

calculation_thread : thread client_thread_type;

connections

event data port response_get ->

calculation_thread.response_get;

event port calculation_thread.request_get -> request_get;

event port response_store ->

calculation_thread.response_store;

event data port request_store -> request_store;

properties

Dispatch_Protocol => Periodic;

Period => 20 ms;

end calculation_process_type.one_thread;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in AADL Explained a Bit

⚫ Note the level of detail at which the system is specified

A component (calculation_type.calculation) runs

on…

A physical processor (the_calculation_processor),

which runs…

A process (calculation_process_type.one_thread),

which in turn contains…

A single thread of control (calculation_thread), all of

which can make two kinds of request-response calls
through…

Ports (request_get/response_get,
request_store/response_store) over…

An Ethernet bus (lan_bus_type.Ethernet)

⚫ All connected through composition, port-mapping, and so on
105

Software Architecture: Foundations, Theory, and Practice

AADL Evaluation

106

⚫ Scope and purpose
Interconnected multi-level
systems architectures

⚫ Basic elements
Multitude – components,
threads, hardware
elements, configurations,
mappings…

⚫ Style
N/A

⚫ Static & Dynamic Aspects
Primarily static structure but
additional properties specify
dynamic aspects

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Most elements have concrete
counterparts with well-known
semantics

⚫ Accuracy
Structural as well as other
interesting properties can be
automatically analyzed

⚫ Precision
Many complex interconnected
levels of abstraction and
concerns

⚫ Viewpoints
Many viewpoints addressing
different aspects of the system

⚫ Viewpoint consistency
Mappings and refinement can
generally be automatically
checked or do not overlap

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

107

Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL

108

Software Architecture: Foundations, Theory, and Practice

Extensible ADLs
⚫ There is a tension between

The expressiveness of general-purpose ADLs and

The optimization and customization of more specialized
ADLs

⚫ How do we get the best of both worlds?

Use multiple notations in tandem

⚫ Difficult to keep consistent, often means excessive
redundancy

Overload an existing notation or ADL (e.g., UML profiles)

⚫ Increases confusion, doesn’t work well if the custom
features don’t map naturally onto existing features

Add additional features we want to an existing ADL

⚫ But existing ADLs provide little or no guidance for this

⚫ Extensible ADLs attempt to provide such guidance
109

Software Architecture: Foundations, Theory, and Practice

Acme
⚫ Early general purpose ADL with support for

extensibility through ‘properties’

⚫ Advantages

Structural specification capabilities similar to
Darwin

Simple property structure allows for arbitrary
decoration of existing elements

Tool support with AcmeStudio

⚫ Disadvantages

No way to add new views

Property specifications can become extremely
complex and have entirely separate
syntax/semantics of their own

110

Software Architecture: Foundations, Theory, and Practice

LL in Acme

111

//Global Types

Property Type returnsValueType = bool;

Connector Type CallType = {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType;

};

System LunarLander = {

//Components

Component DataStore = {

Ports { getValues; storeValues; }

};

Component Calculation = {

Ports { calculate; getValues; storeValues; }

};

Component UserInterface = {

Ports { getValues; calculate; }

};

// Connectors

Connector UserInterfaceToCalculation : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Connector UserInterfaceToDataStore : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Acme (cont’d)

112

Connector CalculationToDataStoreS : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = false;

}

Connector CalculationToDataStoreG : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Attachments {

UserInterface.getValues to

UserInterfaceToDataStore.callerRole;

UserInterfaceToDataStore.calleeRole to

DataStore.getValues;

UserInterface.getValues to

UserInterfaceToDataStore.callerRole;

UserInterfaceToDataStore.calleeRole to

DataStore.getValues;

UserInterface.calculate to

UserInterfaceToCalculation.callerRole;

UserInterfaceToCalculation.calleeRole to

Calculation.calculate;

Calculation.storeValues to

CalculationToDataStoreS.callerRole;

CalculationToDataStoreS.calleeRole to

DataStore.storeValues;

Calculation.getValues to

CalculationToDataStoreG.callerRole;

CalculationToDataStoreG.calleeRole to

DataStore.getValues;

};

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Acme
⚫ The model is verbose, because:

Acme is domain neutral and its semantics make
few assumptions that allow information to be
conveyed implicitly

The intention is that the user doesn’t write code
but the latter is generated from a graphical
environment (AcmeStudio)

⚫ The basic model has only one property

Each procedure call connector is annotated with a
property indicating whether or not the operation
has a return value

This may be useful if the designer wants to use
asynchronous communication: if a caller doesn't
require a return value, it can continue executing 113

Software Architecture: Foundations, Theory, and Practice

LL in Acme (cont’d)

114

Property Type StoreType = enum { file,

relationalDatabase, objectDatabase };

Component DataStore = {

Ports {

getValues; storeValues;

}

Property storeType : StoreType =

relationalDatabase;

Property tableName : String = “LanderTable”;

Property numReplicas: int = 0;

};

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in Acme
⚫ Additional properties can add detail to the basic

model

⚫ In the previous slide, an extended description of
DataStore is defined, indicating that this
component should store its data in a non-replicated
table called LanderTable in a relational database

⚫ However, these particular names and values don’t
have a universal meaning

Tools and stakeholders must be informed about
which properties to expect and how to process
their values

115

Software Architecture: Foundations, Theory, and Practice

Acme Evaluation

116

⚫ Scope and purpose
Structures of components
and connectors with
extensible properties

⚫ Basic elements
Components, connectors,
interfaces, hierarchy,
properties

⚫ Style
Through type system

⚫ Static & Dynamic Aspects
Static structure is modeled
natively, dynamic aspects in
properties

⚫ Dynamic Models
AcmeLib allows
programmatic model
manipulation

⚫ Non-Functional Aspects
Through properties

⚫ Ambiguity
Meanings of elements subject to
some interpretation, properties
may have arbitrary level of
rigor/formality

⚫ Accuracy
Checkable syntactically, via type
system, and properties by
external tools

⚫ Precision
Properties can increase precision
but cannot add new elements

⚫ Viewpoints
Structural viewpoint is native,
properties might provide
additional viewpoints

⚫ Viewpoint consistency
Via external tools that must be
developed

Software Architecture: Foundations, Theory, and Practice

ADML

⚫ Effort to standardize the concepts in Acme and leverage
XML as a syntactic base

⚫ Advantages

XML parsers and tools readily available

Added some ability to reason about types of
properties with meta-properties

⚫ Disadvantages

Did not take advantage of XML extension mechanisms
and instead provides extensibility by simply encoding
Acme’s name-value pair properties in XML

117

Software Architecture: Foundations, Theory, and Practice

LL in ADML

⚫ Similar to Acme, except in an XML format

118

<Component ID=”datastore” name=”Data Store”>

<ComponentDescription>

<ComponentBody>

<Port ID=”getValues” name=”getValues”/>

<Port ID=”storeValues” name=”storeValues”/>

</ComponentBody>

</ComponentDescription>

</Component>

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

xADL

⚫ Modular XML-based ADL intended to maximize
extensibility both in notation and tools

⚫ Advantages

Growing set of generically useful modules
available already

Tool support in ArchStudio environment

Users can add their own modules via well-defined
extensibility mechanisms

⚫ Disadvantages

Extensibility mechanisms can be complex and
increase learning curve

Heavy reliance on tools

119

Software Architecture: Foundations, Theory, and Practice

xADL (cont’d)

⚫ The syntax in xADL is defined in a set of XML
schemas

⚫ XML schemas are similar to DTDs but the latter
define document syntax through production rules and
the former define syntax through a set of data types

⚫ xADL is the composition of all the xADL schemas,
where each such schema adds a set of features to
the language; this has the following advantages:

Incremental adoption–users can use as few or as
many features make sense in their domain

Divergent extension–users can extend the
language to tailor it to their own purposes

Feature reuse–schemas can be shared among
projects that need common features 120

Software Architecture: Foundations, Theory, and Practice

xADL (cont’d)

⚫ Because xADl can be extended with unforeseen
constructs, it requires its own tools to cope with a
notation whose syntax may change from project to
project

⚫ The xADL Binding Library

A data binding library consisting of a set of Java
classes that correspond to xADL data types

A program can query and manipulate instances of
these classes to explore and change an xADL
document

⚫ Apigen

A xADL data binding library generator: given a set
of XLM schemas, it generates the complete data
binding library with support for these schemas 121

Software Architecture: Foundations, Theory, and Practice

xADL and xADLite

⚫ The native storage format of xADl is in an XML
format which is very verbose

⚫ This is also because xADL makes extensive use of
XML namespaces and multiple schemas that add a
significant amount of “housekeeping” data to xADL
documents

⚫ A simple component in xADL XML format would look
like the code in the following slide

122

Software Architecture: Foundations, Theory, and Practice

xADL and xADLite (cont’d)

123

<types:component xsi:type="types:Component"

types:id="myComp">

<types:description xsi:type="instance:Description">

MyComponent

</types:description>

<types:interface xsi:type="types:Interface"

types:id="iface1">

<types:description xsi:type="instance:Description">

Interface1

</types:description>

<types:direction xsi:type="instance:Direction">

inout

</types:direction>

</types:interface>

</types:component>

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

xADL and xADLite (cont’d)

⚫ Even if we remove namespace and XML-typing
information, the result is still verbose

⚫ There is an alternative, more syntactically terse
format, called xADLite

⚫ The transformation between xADL and xADLite is
lossless and no information is lost in translating a
document from one formalism to the other

⚫ The same component in xADLite looks now like the
code in the following slide

124

Software Architecture: Foundations, Theory, and Practice

xADL and xADLite (cont’d)

125

component{

id = "myComp";

description = "MyComponent";

interface{

id = "iface1";

description = "Interface1";

direction = "inout";

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in xADL

126

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in xADL (cont’d)

⚫ The visual modeling of the Lunar Lander in xADL
using the graphical editor Archipelago is shown in the
previous slide

⚫ As with Acme, the key notational contribution of
xADL lies in its extensibility, which goes beyond
adding properties to the core constructs

⚫ xADL has no fundamental separation between core
concepts and extensions

It allows the addition of completely new syntactic
elements as well as structural extensions to
existing elements

⚫ The textual form of LL in xADl might look like the one
in the following slides

127

Software Architecture: Foundations, Theory, and Practice

LL in xADL (cont’d)

128

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in xADL (cont’d)

129

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

LL in xADL (cont’d)

130

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a
Schema in xADL

131

Software Architecture: Foundations, Theory, and Practice

Demonstrating the extension of a
schema in xADL(cont’d)
⚫ The specification in the previous slide says that a

component has the following:

One identifier (a string attribute)

One description (a string element)

Zero or more interfaces

An optional link to its type

⚫ By adding another schema, we can create an
extended form of a component that can be used to
capture more information about where the
component will store data

⚫ This is shown on the next slide

132

Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a
Schema in xADL (cont’d)

133

Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a
Schema in xADL(cont’d)
⚫ This extension adds several new capabilities and defines:

A new ADT called Database, indicating we are going
to define many different subtypes of Database that
will be substitutable whenever a Database is needed

Two concrete subtypes of Database

⚫ RelationalDatabase with a table name and a
number of replicas

⚫ FileDatabase with a file name and an optional
host name on which the file resides

An extension to the plain xADL Component datatype

⚫ A DatabaseComponent has everything that a
component does, plus a Database element

⚫ Because both RelationalDatabase and
FileDatabase are Databases, either one can be
used here

134

Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a
Schema in xADL(cont’d)
⚫ We can now extend the original xADL description of Data

Store in Lunar Lander

⚫ When the new DatabaseComponent schema is ready,
the Apigen tool can generate a new data binding library
that supports the new constructs

⚫ Sharing of schemas are possible and encouraged

The DatabaseComponent schema can be reused in
different projects

⚫ The extended Lunar Lander Data Store component is
shown on the next slide

135

Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a
Schema in xADL (cont’d)

136

Software Architecture: Foundations, Theory, and Practice

xADL Tools

137

xADL 2.0

Schemas

DOM Implementation
(e.g., Crimson, Xerces)

Manipulates XML documents

as data structure of elements

and attributes

DOM Implementation
(e.g., Crimson, Xerces)

Manipulates XML documents

as data structure of elements

and attributes

XSV
Off-the-shelf XML

schema validator

XSV
Off-the-shelf XML

schema validator

XML Spy
Off-the-shelf XML

development

environment

XML Spy
Off-the-shelf XML

development

environment

Data Binding Library
Provides object-oriented

interface to xADL

documents

Data Binding Library
Provides object-oriented

interface to xADL

documents

ArchEdit
Tree-based syntax-

directed editor

for xADL documents

ArchEdit
Tree-based syntax-

directed editor

for xADL documents

xArchADT
Façade interface

for data binding

library

xArchADT
Façade interface

for data binding

library

Apigen
XML schema to

Java data

binding generator

Apigen
XML schema to

Java data

binding generator

(Other Tools)
Tools that implement

xADL semantics

(Other Tools)
Tools that implement

xADL semantics

parses/edits

uses

uses

parses

generates

validates

edits

wraps

usesuse

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

ArchStudio Environment

138

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

xADL Schemas (Modules)

139

Schema Features

Structure &

Types

Defines basic structural modeling of prescriptive

architectures: components, connectors, interfaces,

links, general groups, as well as types for components,

connectors, and interfaces.

Instances

Basic structural modeling of descriptive architectures:

components, connectors, interfaces, links, general

groups.

Abstract

Implementation

Mappings from structural element types (component

types, connector types) to implementations.

Java

Implementation

Mappings from structural element types to Java

implementations.

Options

Allows structural elements to be declared optional—

included or excluded from an architecture depending

on specified conditions.

Variants

Allows structural element types to be declared

variant—taking on different concrete types depending

on specified conditions.

Versions

Defines version graphs; allows structural element types

to be versioned through association with versions in

version graphs.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

xADL Evaluation

140

⚫ Scope and purpose
Modeling various
architectural concerns with
explicit focus on extensibility

⚫ Basic elements
Components, connectors,
interfaces, links, options,
variants, versions, …, plus
extensions

⚫ Style
Limited, through type system

⚫ Static & Dynamic Aspects
Mostly static views with
behavior and dynamic
aspects provided through
extensions

⚫ Dynamic Models
Models can be manipulated
programmatically

⚫ Non-Functional Aspects
Through extensions

⚫ Ambiguity
Base schemas are permissive;
extensions add rigor or formality
if needed

⚫ Accuracy
Correctness checkers included in
ArchStudio and users can add
additional tools through well-
defined mechanisms

⚫ Precision
Base schemas are abstract,
precision added in extensions

⚫ Viewpoints
Several viewpoints provided
natively, new viewpoints through
extensions

⚫ Viewpoint consistency
Checkable through external tools
and additional consistency rules

Software Architecture: Foundations, Theory, and Practice

When Systems Become Too
Complex to Model
⚫ The LL architecture is a relatively simple one with a

finite number of well-known components that run on
a single host

⚫ However, gigantic and diverse applications cannot be
modeled with some of the techniques we saw

‘Agile’ systems that are not explicitly designed
above the level of code modules

Extremely large, complex, or dynamic systems
(e.g., the Web)

⚫ The approach to be taken here is to abstract away
aspects of the complexity to reach a point where
modeling is feasible but also still useful

141

Software Architecture: Foundations, Theory, and Practice

When Systems Become Too
Complex to Model (cont’d)
⚫ Strategies to consider in this case include the following:

Model limited aspects of the architecture

⚫ E.g., you cannot model the Web but you can model
specific interaction patterns

Model an instance

⚫ E.g., you cannot model the Web but you can model
only the portion of the system that is relevant

Exploit regularity

⚫ Often extremely large systems have low
heterogeneity, where large portions of the system
look almost exactly like other portions of the same
system; these portions can be modeled once (as in
the case of the example in Darwin) 142

Software Architecture: Foundations, Theory, and Practice

When Systems Become Too
Complex to Model (cont’d)
⚫ Strategies to consider in this case include the

following (cont’d)

Model the style

⚫ The Web is based on the REST architecture;
instead of modeling the Web as an application,
consider modeling the REST style instead

Model the protocol

⚫ The Web is, in large measure, characterized by
adherence to the HTTP protocol

⚫ Some notations we examined in this chapter
(such as Wright) can be used to to model
protocol details 143

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ We have introduced architecture modeling and identified
many of the issues that occur in the modeling process

⚫ We have also introduced and provided examples of
many architecture description notations

⚫ The preceding overview optimized for breadth rather
than depth

Semantics and capabilities of many of these notations
are quite deep and subtle

Some even have entire books written about them

You are encouraged to investigate individual
notations more deeply

144

Software Architecture: Foundations, Theory, and Practice

Summary (cont’d)

⚫ No single notation–even an extensible notation–is
sufficient to capture all the aspects of an architecture

⚫ The following table groups the various approaches

145

