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Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Concepts

What is modeling?

How do we choose what to model?

What kinds of things do we model?

How can we characterize models?

How can we break up and organize models?

How can we evaluate models and modeling notations?

⚫ Examples

Concrete examples of many notations used to model software 
architectures

⚫ Revisiting Lunar Lander as expressed in different modeling 
notations
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What is Architectural Modeling?

⚫ Recall that we have characterized architecture as the set of 
principal design decisions made about a system

⚫ We can define models and modeling in those terms

An architectural model is an artifact that captures some or 
all of the design decisions that comprise a system’s 
architecture

Architectural modeling is the reification and 
documentation of those design decisions

⚫ How we model is strongly influenced by the notations we 
choose:

An architectural modeling notation is a language or 
means of capturing design decisions
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How do We Choose What to 
Model?

⚫ Architects and other stakeholders must make critical 
decisions:

1. What architectural decisions and concepts should be 
modeled

2. At what level of detail, and

3. With how much rigor or formality

⚫ These are cost/benefit decisions

The benefits of creating and maintaining an 
architectural model must exceed the cost of doing 
so
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Stakeholder-Driven Modeling

⚫ Stakeholders identify 
aspects of the system 
they are concerned 
about

⚫ Stakeholders decide the 
relative importance of 
these concerns

⚫ Modeling depth should 
roughly mirror the 
relative importance of 
concerns

5
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Basic Activities Behind 
Stakeholder-Driven Modeling

1. Identify relevant aspects of the software to model

2. Roughly categorize them in terms of importance

3. Identify the goals of modeling for each aspect

1. Communication

2. Bug finding

3. Quality analysis

4. Generation of other artifacts

5. Etc.

4. Select modeling notations that will model the selected aspects at 
appropriate levels of depth to achieve the modeling goals

5. Create the models

6. Use the models in a manner consistent with the modeling goals
6
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What do We Model?

⚫ Basic architectural elements

Components

Connectors

Interfaces

Configurations

Rationale – reasoning behind decisions

7
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What do We Model? (cont’d)

⚫ Components

The architectural building blocks that encapsulate a 
subset of the system’s functionality and/or data, and 
restrict access to them via an explicitly defined 
interface

⚫ Connectors

Architectural building blocks that affect and regulate 
interactions among components

⚫ Interfaces

Points at which components and connectors interact 
with the outside world–in general, other components 
and connectors
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What do We Model? (cont’d)

⚫ Configurations

A set of specific associations between the 
components and connectors of a software system’s 
architecture; such associations may be captured via 
graphs whose nodes represent components and 
connectors, and whose edges represent their 
interconnectivity

⚫ Rationale

The information that explains why particular 
architectural decisions were made, and what purpose 
various elements serve
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What do We Model? (cont’d)

⚫ Elements of the architectural style

Inclusion of specific basic elements (e.g., 
components, connectors, interfaces)

Component, connector, and interface types

Constraints on interactions

Behavioral constraints

Concurrency constraints

…
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What do We Model? (cont’d)

⚫ Elements of the architectural style

Specific Elements

⚫ A style may prescribe that particular components, connectors 
or interfaces be included in architectures or used in specific 
situations

Component, Connector, and Interface Types

⚫ Specific types of elements may be permitted, required or 
prohibited in the architecture

Constraints on Interaction

⚫ Temporal (“calling components may call init() before any 

other method”)

⚫ Topological (“only components in the client layer are allowed 
to invoke components in the server layer”)

⚫ Specify particular protocols (e.g., FTP or HTTP)
11
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What do We Model? (cont’d)

⚫ Elements of the architectural style (cont’d)

Behavioral Constraints

⚫ They define how architectural elements behave 
and can range from simple rules to complete 
behavioral specifications of components

Concurrency Constraints

⚫ Constraints on which elements perform their 
functions concurrently and how they synchronize 
access to shared resources
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What do We Model? (cont’d)

⚫ Static and Dynamic Aspects

Static aspects of a system do not change as a 
system runs

⚫ E.g., topologies, assignment of 
components/connectors to hosts, host and 
network configurations or mapping of 
architectural elements to code or binary 
artifacts

Dynamic aspects do change as a system runs

⚫ E.g., state of individual components or 
connectors over time (behavioral models) or 
state of a data flow through a system over time
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What do We Model? (cont’d)

⚫ Static and Dynamic Aspects (cont’d)

The static/dynamic distinction is often unclear

⚫ Consider a system whose topology is relatively 
stable but changes several times during system 
startup

⚫Or changes due to component failure, the use 
of flexible connectors or architectural 
dynamism

In such cases, models that capture both static and 
dynamic system aspects may be employed

⚫ E.g., a static base topology may be 
accompanied by a set of transitions that 
describe a limited set of changes that may 
occur to that topology during execution 14
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What do We Model? (cont’d)

⚫ Important distinction between: 

Models of dynamic aspects of a system (models 
do not change)

Dynamic models (the models themselves change)

⚫ The former refer to properties of the system being 
modeled

⚫ The latter refer to changes to the models themselves

⚫ A model of a dynamic aspect of a system describes 
how the system changes as it executes

⚫ A dynamic model actually changes itself
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What do We Model? (cont’d)

⚫ Functional and non-functional aspects of a system

Functional aspects relate to what a system does

⚫ “The system prints medical records”

Non-functional aspects relate to how a system 
performs its functions

⚫ “The system prints medical records quickly and 
confidentially”

⚫ Architectural models tend to be functional, but like 
rationale it is often important to capture non-functional 
decisions even if they cannot be automatically or 
deterministically interpreted or analyzed
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Important Characteristics of 
Models

⚫ Ambiguity

A model is ambiguous if it is open to more than one 
interpretation

⚫ Accuracy and Precision

Different, but often conflated concepts

⚫ A model is accurate if it is correct, conforms to 
fact, or deviates from correctness within 
acceptable limits

⚫ A model is precise if it is specific, detailed, and 
exact
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Accuracy vs. Precision

18

Inaccurate and 

imprecise: 

incoherent or 

contradictory 

assertions

Accurate but 

imprecise:

ambiguous or 

shallow 

assertions

Inaccurate but 

precise: 

detailed 

assertions that 

are wrong 

Accurate and 

precise: 

detailed 

assertions that 

are correct
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Views and Viewpoints

⚫ Generally, it is not feasible to capture everything we want to 
model in a single model or document

The model would be too big, complex, and confusing

⚫ So, we create several coordinated models, each capturing a 
subset of the design decisions

Generally, the subset is organized around a particular 
concern or other selection criteria

⚫ We call the subset-model a ‘view’ and the concern (or criteria) 
a ‘viewpoint’

⚫ A view is a set of design decisions related by a 
common concern (or set of concerns)

⚫ A viewpoint defines the perspective from which a view 
is taken 19



Software Architecture: Foundations, Theory, and Practice

Views and Viewpoints Example

20

Deployment view of a 3-tier 

application

Deployment view of a 

Lunar Lander system

Both instances of the 

deployment viewpoint
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Commonly-Used Viewpoints

⚫ Logical Viewpoints

Capture the logical (often software) entities in a 
system and how they are interconnected

⚫ Physical Viewpoints

Capture the physical (often hardware) entities in a 
system and how they are interconnected

⚫ Deployment Viewpoints

Capture how logical entities are mapped onto physical 
entities
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Commonly-Used Viewpoints 
(cont’d)

⚫ Concurrency Viewpoints

Capture how concurrency and threading will be 
managed in a system

⚫ Behavioral Viewpoints

Capture the expected behavior of (parts of) a 
system

⚫ It is also possible for multiple views to be taken from 
the same viewpoint for the same system

One view might show only top-level components, 
while another view might show additionally 
subcomponents and internal structure
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Commonly-Used Viewpoints 
(cont’d)

⚫ Importance of views and viewpoints

They provide a way to limit presented information 
to a cognitively manageable subset of the 
architecture

They display related concepts simultaneously

They can be tailored to the needs of specific 
stakeholders

They can be used to display the same data at 
various levels of abstraction
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Consistency Among Views

⚫ Views can contain overlapping and related design 
decisions

There is the possibility that the views can thus 
become inconsistent with one another

⚫ Views are consistent if the design decisions they contain 
are compatible

Views are inconsistent if two views assert design 
decisions that cannot simultaneously be true

⚫ Inconsistency is usually but not always indicative of 
problems

Temporary inconsistencies are a natural part of 
exploratory design

Inconsistencies cannot always be fixed
24
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Example of View Inconsistency

25
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Example of View Inconsistency 
(cont’d)

⚫ The previous figure shows two hypothetical views of a 
distributed LL system

⚫ The physical view (a) depicts three hosts (Ground 
System, Command Module Computer, Lander 
Computer)

⚫ However, the deployment view (b) shows components 
assigned to only two hosts (Ground System, Lunar 
Lander)

⚫ This inconsistency is relatively easy to spot; other, more 
subtle inconsistencies (e.g., between different behavioral 
specifications of an architecture) are harder to detect 
and more costly to fix 26
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Common Types of Inconsistencies

⚫ Direct inconsistencies

When two views assert directly contradictory 
propositions

⚫ E.g., “The system runs on two hosts” and “the 
system runs on three hosts”

⚫ Refinement inconsistencies

High-level (more abstract) and low-level (more 
concrete) views of the same parts of a system conflict

⚫ E.g., a “top level” structural view contains a 
component that is absent from a structural view 
that includes subarchitectures
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Common Types of Inconsistencies 
(cont’d)

⚫ Static vs. dynamic aspect inconsistencies

Dynamic aspects (e.g., behavioral specifications) 
conflict with static aspects (e.g., topologies)

E.g., a message sequence chart view might depict 
the handling of messages by a component that is 
not contained in the structural view

⚫ Dynamic vs. dynamic aspect inconsistencies

Different descriptions of dynamic aspects of a 
system conflict

E.g., a message sequence chart depicts a specific 
interaction between components that is not 
allowed by the relevant behavioral specifications 
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Common Types of Inconsistencies 
(cont’d)

⚫ Functional vs. non-functional inconsistencies

When a non-functional property of a system 
prescribed by a non-functional view is not met by 
the design expressed by functional views

E.g., a non-functional view of a client-server 
system may express that the system should be 
robust, but the physical view of the system may 
show only a single server with no evidence of 
failure-handling machinery

29



Software Architecture: Foundations, Theory, and Practice

Evaluating Modeling Approaches

⚫ Scope and purpose

What does the technique help you model?

What does it not help you model?

⚫ Basic elements

What are the basic elements or concepts (the ‘atoms’) 
that are modeled?

How are they modeled?

⚫ Style

To what extent does the approach help you model 
elements of the underlying architectural style?

Is the technique bound to one particular style or 
family of styles? 30
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Evaluating Modeling Approaches 
(cont’d)

⚫ Static and dynamic aspects

What static and dynamic aspects of an architecture 
does the approach help you model?

⚫ Dynamic modeling

To what extent does the approach support models 
that change as the system executes?

⚫ Non-functional aspects

To what extent does the approach support (explicit) 
modeling of non-functional aspects of architecture?
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Evaluating Modeling Approaches 
(cont’d)
⚫ Ambiguity

How does the approach help you to avoid (or 
allow) ambiguity?

⚫ Accuracy

How does the approach help you to assess the 
correctness of models?

⚫ Precision

At what level of detail can various aspects of the 
architecture be modeled?
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Evaluating Modeling Approaches 
(cont’d)

⚫ Viewpoints

Which viewpoints are supported by the approach?

⚫ View Consistency

How does the approach help you assess or 
maintain consistency among different views 
expressed in a model?

33



Software Architecture: Foundations, Theory, and Practice

Surveying Modeling Approaches

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Surveying Modeling Approaches 
(cont’d)
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL 35
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Natural Language

⚫ Spoken/written languages such as English

⚫ Advantages
Highly expressive

Accessible to all stakeholders

Good for capturing non-rigorous or informal architectural 
elements like rationale and non-functional requirements

Plentiful tools available (word processors and other text editors)

⚫ Disadvantages
Ambiguous, non-rigorous, non-formal

Often verbose

Cannot be effectively processed or analyzed by 
machines/software
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37

Lunar Lander in Natural Language

“The Lunar Lander application consists of three components: a data store

component, a calculation component, and a user interface component. 

The job of the data store component is to store and allow other components 

access to the height, velocity, and fuel of the lander, as well as the current 

simulator time.

The job of the calculation component is to, upon receipt of a burn-rate 

quantity, retrieve current values of height, velocity, and fuel from the data 

store component, update them with respect to the input burn-rate, and store 

the new values back. It also retrieves, increments, and stores back the 

simulator time. It is also responsible for notifying the calling component of 

whether the simulator has terminated, and with what state (landed safely, 

crashed, and so on). 

The job of the user interface component is to display the current status of 

the lander using information from both the calculation and the data store

components. While the simulator is running, it retrieves the new burn-rate 

value from the user, and invokes the calculation component.”
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Natural Language Example 
(cont’d)

⚫ The structure of the components and their dependencies 
is explicitly stated, as well as a description of their 
behaviors, inputs, outputs, and general responsibilities

⚫ However, the description does not explain the algorithm 
the calculation component uses, the particular formats of 
the data values, anything about the connectors between 
the components, or what the user interface should look 
like

⚫ The ambiguity of the natural language may result in the 
generation of many different implementations that 
satisfy this architectural description and they may not all 
function identically 38
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Related Alternatives

⚫ Ambiguity can be reduced and rigor can be increased 
through the use of techniques like ‘statement templates,’ 
e.g.:

The (name) interface on (name) component takes (list-of-
elements) as input and produces (list-of-elements) as output 
(synchronously | asynchronously)

This can help to make rigorous data easier to read and interpret, 
but such information is generally better represented in a more 
compact format

39
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Natural Language Evaluation

40

⚫ Scope and purpose
Capture design decisions in 
prose form

⚫ Basic elements
Any concepts required

⚫ Style
Can be described by using 
more general language

⚫ Static & Dynamic Aspects
Any aspect can be modeled 

⚫ Dynamic Models
No direct tie to 
implemented/ running 
system

⚫ Non-Functional Aspects
Expressive vocabulary 
available (but no way to 
verify)

⚫ Ambiguity
Plain natural language tends to 
be ambiguous; statement 
templates and dictionaries help

⚫ Accuracy
Manual reviews and inspection

⚫ Precision
Can add text to describe any 
level of detail

⚫ Viewpoints
Any viewpoint (but no specific 
support for any particular 
viewpoint)

⚫ Viewpoint consistency
Manual reviews and inspection
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Informal Graphical Modeling

⚫ General diagrams produced in tools like PowerPoint and 
OmniGraffle

⚫ Advantages
Can be aesthetically pleasing

Size limitations (e.g., one slide, one page) generally constrain 
complexity of diagrams

Extremely flexible due to large symbolic vocabulary

⚫ Disadvantages
Ambiguous, non-rigorous, non-formal

⚫ But often treated otherwise

Cannot be effectively processed or analyzed by 
machines/software

41
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Lunar Lander as an Informal 
Graphical Model

42
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Informal Graphical Model Example
(cont’d)

⚫ The particular symbology used is not directly explained–
there is no underlying semantic model through which to 
interpret this diagram

⚫ The intended interpretation is that the 3D boxes are 
software components, the arrows indicate invocation 
dependencies, and the round rectangles are commentary 
on the intended behavior and responsibilities of the 
components

⚫ Somewhat better than the natural language model, in 
that the componentization of the system and the 
component dependencies are immediately obvious, and 
the behaviors are visually connected to the components43
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Related Alternatives

⚫ Some diagram editors (e.g., Microsoft Visio) can be 
extended with semantics through scripts and other 
additional programming

Generally, ends up somewhere in between a custom 
notation-specific editor and a generic diagram editor

Limited by extensibility of the tool

⚫ PowerPoint Design Editor (Goldman, Balzer) was an 
interesting project that attempted to integrate semantics 
into PowerPoint

44
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Informal Graphical Evaluation

45

⚫ Scope and purpose
Arbitrary diagrams 
consisting of symbols and 
text

⚫ Basic elements
Geometric shapes, splines, 
clip-art, text segments

⚫ Style
In general, no support

⚫ Static & Dynamic Aspects
Any aspect can be modeled, 
but no semantics behind 
models 

⚫ Dynamic Models
Rare, although APIs to 
manipulate graphics exist

⚫ Non-Functional Aspects
With natural language 
annotations

⚫ Ambiguity
Can be reduced through use of 
rigorous symbolic 
vocabulary/dictionaries

⚫ Accuracy
Manual reviews and inspection

⚫ Precision
Up to modeler; generally, canvas 
is limited in size (e.g., one ‘slide’)

⚫ Viewpoints
Any viewpoint (but no specific 
support for any particular 
viewpoint)

⚫ Viewpoint consistency
Manual reviews and inspection
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UML – the Unified Modeling 
Language

⚫ 13 loosely-interconnected notations called diagrams (what in 
this course we call ‘viewpoints’) that capture static and dynamic 
aspects of software-intensive systems

⚫ Advantages

Support for a diverse array of viewpoints focused on many 
common software engineering concerns

Ubiquity improves comprehensibility

Extensive documentation and tool support from many 
vendors

⚫ Disadvantages

Needs customization through profiles to reduce ambiguity

Difficult to assess consistency among views

Difficult to capture foreign concepts or views
46
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UML – the Unified Modeling 
Language (cont’d)

⚫ The figure below shows two components with a dashed arrow 
showing a ‘dependency’: Calculation is dependent on Data 
Store; however, it is unclear what kind of dependency this is

Some element of Calculation calls Data Store?

Instances of Calculation contain a pointer to an instance 
of Data Store?

Calculation requires Data Store to compile?

Calculation can send messages to Data Store?

Calculation’s implementation has a method that takes an 
instance of Data Store’s implementation as a parameter?

47
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UML – the Unified Modeling 
Language (cont’d)

⚫ UML offers stereotypes or tagged values to provide more info

⚫ In the figure below, the stereotypes used give more details 
about the dependency between the two components

⚫ In the first case, Calculation imports Data Store and in 
the second Calculation calls Data Store

⚫ But what exactly does it mean to “import” or “call”?

48
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Lunar Lander in UML

49
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Lunar Lander in UML (cont’d)

⚫ The component diagram of LL might look like the one in 
the previous slide and it looks very similar to the informal 
graphical diagram

⚫ However, this diagram has a rigorous syntax and some 
underlying semantics

⚫ The symbols used are documented in the UML 
specification

⚫ Informal boxes in the graphical diagram are replaced by 
the well-defined ‘component’ symbol

⚫ However, the diagram is not completely unambiguous

What kind of components are involved?

When and how are calls among components made?
50
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Lunar Lander in UML (cont’d)

51
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Lunar Lander in UML (cont’d)

⚫ The behavior of the system might be specified using 
a UML statechart diagram, as the one in the previous 
slide

⚫ The start state is indicated by the plain dark circle 
and the end state is indicated by the outlined dark 
circle

⚫ Each rounded rectangle represents a state of the 
system

⚫ Arrows represent transitions between the states

⚫ The conditions in square brackets indicate guards 
that constrain when state transitions may occur

52
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Lunar Lander in UML (cont’d)

⚫ According to this statechart:

The LL system begins by displaying the lander 
state

Then, either the simulation is done, or the system 
will request a burn rate from the user

The user may choose to end the program or 
provide a burn rate and, if this is valid, the 
program will then calculate the new simulation 
state and display it

The loop will repeat until the simulation is done

53
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Lunar Lander in UML (cont’d)

⚫ The statechart provides a more rigorous and formal 
description of the system behavior than either the 
natural language or informal graphical architecture 
description

⚫ However, it leaves out an important detail:

Which components perform the specified actions?

⚫ This is captured in another type of a UML diagram, 
the sequence diagram

54
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Lunar Lander in UML (cont’d)

55
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Lunar Lander in UML (cont’d)

⚫ The sequence diagram depicts a particular sequence 
of operations that can be performed by the LL 
components

⚫ User Interface gets a burn rate from the user, 
Calculation retrieves the state of the lander from 
the Data Store and updates it, and then returns 
the termination state of the lander to User 
Interface

⚫ The previous three diagrams capture both the static 
(structural) and dynamic (behavioral) aspects of the 
system

⚫ Are these different views consistent with each other?56



Software Architecture: Foundations, Theory, and Practice

UML Evaluation

57

⚫ Scope and purpose
Diverse array of design 
decisions in 13 viewpoints

⚫ Basic elements
Multitude – states, classes, 
objects, composite nodes…

⚫ Style
Through (OCL) constraints

⚫ Static & Dynamic Aspects
Some static diagrams (class, 
package), some dynamic 
(state, activity) 

⚫ Dynamic Models
Rare; depends on the 
environment

⚫ Non-Functional Aspects
No direct support; natural-
language annotations

⚫ Ambiguity
Many symbols are interpreted 
differently depending on context; 
profiles reduce ambiguity

⚫ Accuracy
Well-formedness checks, 
automatic constraint checking, 
ersatz tool methods, manual

⚫ Precision
Up to modeler; wide flexibility

⚫ Viewpoints
Each diagram type represents a 
viewpoint; more can be added 
through overloading/profiles

⚫ Viewpoint consistency
Constraint checking, ersatz tool 
methods, manual
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Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Early Architecture Description 
Languages

⚫ Early ADLs proliferated in the 1990s and explored ways 
to model different aspects of software architecture

Many emerged from academia

Focus on structure: components, connectors, 
interfaces, configurations

Focus on formal analysis

None used actively in practice today, tool support has 
waned

⚫ Ideas influenced many later systems, though

60
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Darwin

⚫ General purpose language with graphical and textual 
visualizations focused on structural modeling of systems

⚫ Advantages

Simple, straightforward mechanism for modeling structural 
dependencies

Interesting way to specify repeated elements through 
programmatic constructs

Can be modeled in pi-calculus for formal analysis

Can specify hierarchical (i.e., composite) structures

⚫ Disadvantages

Limited usefulness beyond simple structural modeling

No notion of explicit connectors

⚫ Although components can act as connectors
61
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LL in Darwin
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component DataStore{

provide landerValues;

}

component Calculation{

require landerValues;

provide calculationService;

}

component UserInterface{

require calculationService;

require landerValues;

}

component LunarLander{

inst

U: UserInterface;

C: Calculation;

D: DataStore;

bind

C.landerValues -- D.landerValues;

U.landerValues -- D.landerValues;

U.calculationService -- C.calculationService; 

}

Canonical Textual Visualization Graphical Visualization

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Darwin (cont’d)

⚫ Each component is described with explicit provided and 
required interfaces

⚫ The overall application structure is defined using a top-
level component with an internal structure

I.e., the LL application itself is a component 
containing the UserInterface, Calculation, and 
DataStore components
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Programmatic Darwin Constructs
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component WebServer{

provide httpService;

}

component WebClient{

require httpService;

}

component WebApplication(int numClients){

inst S: WebServer;

array C[numClients]: WebClient;

forall k:0..numClients-1{

inst C[k] @ k;

bind C[k].httpService -- S.httpService;

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Many declarative ADLs simply enumerate all the components 
and bindings in an architecture one by one

• Darwin, in addition, supports the creation of configurations 
using programming-language-like constructs, such as loops

• In the above code the number of clients is parameterizable
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Darwin Evaluation
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⚫ Scope and purpose
Modeling software structure

⚫ Basic elements
Components, interfaces, 
configurations, hierarchy

⚫ Style
Limited support through 
programmatic constructs

⚫ Static & Dynamic Aspects
Mostly static structure; some 
additional support for 
dynamic aspects through 
lazy and dynamic 
instantiation/binding 

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Rigorous, but structural 
elements can be interpreted in 
many ways

⚫ Accuracy
Pi-calculus analysis

⚫ Precision
Modelers choose appropriate 
level of detail through hierarchy

⚫ Viewpoints
Structural viewpoints

⚫ Viewpoint consistency
N/A
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Rapide
⚫ Language and tool-set for exploring dynamic properties of systems 

of components that communicate through events

⚫ Advantages

Unique and expressive language for describing asynchronously 
communicating components

Architecture specifications in Rapide are interesting because they 
are executable

Tool-set supports simulation of models and graphical 
visualization of event traces

⚫ Disadvantages

No natural or explicit mapping to implemented systems

High learning curve

Important tool support is difficult to run on modern machines
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POSETs

⚫ The power of Rapide comes from its organization of 
events into partially ordered sets, called POSETs

⚫ Rapide components work concurrently, emitting and 
responding to events

⚫ There are causal relationships between some events, 
e.g., if a component receives event A and responds by 
emitting event B, then there is a causal relationship from 
A→B
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POSETs (cont’d)
⚫ Causal relationships between two events A and B in 

Rapide exist when any of the following are true:

A and B are generated by the same process

A process is triggered by A and then generates B

A process generated A and then assigns to a variable 
v, another process reads v and then generates B

A triggers a connection that generates B

A precedes C which precedes B (transitive closure)

⚫ As a program runs, its components generate a stream of 
events over time and some of these events will be 
causally related by one of the above relationships
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POSETs (cont’d)
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POSETs (cont’d)

⚫ In the previous figure, the left portion shows a raw 
event stream over time: components in some software  
architecture modeled in Rapide send events A, B, C, D, E
at times t0 through t4, respectively

These events are temporally ordered but not causally 
ordered

⚫ The right portion of the figure shows the causal ordering 
of these events; in fact, there are two partial orders:

A, B, and D

C and E

⚫ We call these orderings partial because not all the 
events are ordered with respect to one another

70



Software Architecture: Foundations, Theory, and Practice

LL in Rapide
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type DataStore is interface

action in  SetValues();

out NotifyNewValues();

behavior

begin

SetValues => NotifyNewValues();;

end DataStore;

type Calculation is interface

action in  SetBurnRate();

out DoSetValues();

behavior

action CalcNewState();

begin

SetBurnRate => CalcNewState(); DoSetValues();;

end Calculation;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Rapide (cont’d)
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type Player is interface

action out DoSetBurnRate();

in  NotifyNewValues();

behavior

TurnsRemaining : var integer := 1;

action UpdateStatusDisplay();

action Done();

begin

(start or UpdateStatusDisplay) where \

($TurnsRemaining > 0) => \

if ($TurnsRemaining > 0) then \

$TurnsRemaining := $TurnsRemaining-1; \

DoSetBurnRate(); \

end if;;

NotifyNewValues => UpdateStatusDisplay();;

UpdateStatusDisplay where $TurnsRemaining==0 \

=> Done();;

end Player

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Rapide (cont’d)
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begin

(start or UpdateStatusDisplay) where \

($TurnsRemaining > 0) => \

if ( $TurnsRemaining > 0 ) then \

TurnsRemaining := $TurnsRemaining - 1; \

DoSetBurnRate(); \

end if;;

NotifyNewValues => UpdateStatusDisplay();;

UpdateStatusDisplay where $TurnsRemaining == 0 \

=> Done();;

end UserInterface;

architecture lander() is

P1, P2 : Player;

C : Calculation;

D : DataStore;

connect

P1.DoSetBurnRate to C.SetBurnRate;

P2.DoSetBurnRate to C.SetBurnRate;

C.DoSetValues to D.SetValues;

D.NotifyNewValues to P1.NotifyNewValues();

D.NotifyNewValues to P2.NotifyNewValues();

end LunarLander;

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Rapide (cont’d)

⚫ The Rapide description looks on the surface similar to a 
Darwin one but it also includes behavioral information

⚫ In this version of LL there are two players

⚫ The code starts by defining the types of available 
components and their interfaces

⚫ Each interface has a number of events it can receive 
(in) and send out (out)

⚫ In addition, each component has a behavioral 
specification, defining how it reacts to different events
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LL in Rapide (cont’d)

⚫ At the end of the specification, the system’s structure is 
defined

First components that implement the different 
interface types

Then links between the component interfaces

⚫ The players start off by sending an updated burn rate 
and then they wait for the display to be updated with 
the new status before making another move

⚫ In this version of the game, players are limited to three 
moves, in order for the game not to continue indefinitely 
as there is no other end-game condition
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LL in Rapide (cont’d)
⚫ The Calculation component waits for a 
SetBurnerRate event

⚫ When it receives it, it will fire the internal event 
CalcNewState and then fire a DoSetValues message 
to the DataStore component to update the game state

⚫ When the game state is updated, DataStore fires a 
NotifyNewValues event which causes the players’ 

displays to be updated, thus prompting them to make 
their next moves

⚫ Now let’s see how the events are generated in such a 
program
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Simulation Output With One Player

77
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Simulation Output With One Player 
(cont’d)
⚫ The only counterintuitive aspect of the previous graph is 

the group of ‘start’ events that are fired initially

⚫ As one of Rapide’s primary focus areas is concurrent 
architectures, it attempts to trigger simultaneous 
processing by loading the simulation with a number of 
‘start’ events at the beginning

⚫ Other than this, this trace of events for a one-player 
version of the game looks reasonable

⚫ Let us now see how events are generated for a two-
player version of the game
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Simulation Output With Two 
Players

79
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Simulation Output With Two 
Players (cont’d)
⚫ By examining the causality arrows, we observe that the 

two pathways are intertwined

Requests are getting intermingled, since there is no 
locking or transaction support in this design

⚫ Also, we see the fan-out of display updates at the 
bottom

Each user’s display is getting updated twice–once for 
their own move and once for the other player

This means that both (or all in case of more than 
two) players will try to move at the same time

⚫ So, this specific modeling of LL is buggy; without the 
Rapide events’ graphs it would be difficult to detect 80
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Rapide Evaluation
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⚫ Scope and purpose
Interactions between 
components communicating 
with events

⚫ Basic elements
Structures, components/ 
interfaces, behaviors

⚫ Style
N/A

⚫ Static & Dynamic Aspects
Static structure and dynamic 
behavior co-modeled 

⚫ Dynamic Models
Some tools provide limited 
animation capabilities

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Well-defined semantics limit 
ambiguity

⚫ Accuracy
Compilers check syntax, 
simulators can be used to check 
semantics although simulation 
results are non-deterministic and 
non-exhaustive

⚫ Precision
Detailed behavioral modeling 
possible

⚫ Viewpoints
Single structural/behavioral 
viewpoint

⚫ Viewpoint consistency
N/A
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Wright

⚫ An ADL that specifies structure and formal behavioral 
specifications for interfaces between components and 
connectors

⚫ Advantages

Structural specification similar to Darwin or Rapide

Formal interface specifications can be translated 
automatically into CSP and analyzed with tools

⚫ Can detect subtle problems e.g., deadlock

⚫ Disadvantages

High learning curve

No direct mapping to implemented systems

Addresses a small number of system properties relative 
to cost of use 82
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LL in Wright
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Component DataStore

Port getValues (behavior specification)

Port storeValues (behavior specification)

Computation (behavior specification)

Component Calculation

Port getValues (behavior specification)

Port storeValues (behavior specification)

Port calculate (behavior specification)

Computation (behavior specification) 

Component UserInterface

Port getValues (behavior specification)

Port calculate (behavior specification)

Computation (behavior specification)

Connector Call

Role Caller = 

Role Callee = 

Glue = 

§[]Callerreturncall →→

§[]Calleereturncall →→

§[]

..[]

..

GluereturnCallerreturnCallee

GluecallCalleecallCaller

→→

→→
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LL in Wright (cont’d)
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Configuration LunarLander

Instances

DS : DataStore

C : Calculation

UI : UserInterface

CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS : Call 

Attachments

C.getValues as CtoUIgetValues.Caller

DS.getValues as CtoUIgetValues.Callee

C.storeValues as CtoUIstoreValues.Caller

DS.storeValues as CtoUIstoreValues.Callee

UI.calculate as UItoC.Caller

C.calulate as UItoC.Callee

UI.getValues as UItoDS.Caller

DS.getValues as UItoDS.Callee

End LunarLander.
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LL in Wright (cont’d)

⚫ The structural aspects of the Wright specification of LL 
resemble those we have seen earlier in UML and Darwin

⚫ The distinguishing feature here is the CSP-based formal 
specifications of components/connectors interfaces and 
behavior

⚫ The value of these specifications is that properties such as 
freedom from deadlock can be analyzed, something 
difficult or impossible to detect if a system is implemented 
in a traditional programming language

85



Software Architecture: Foundations, Theory, and Practice

Wright Evaluation
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⚫ Scope and purpose
Structures, behaviors, and 
styles of systems composed 
of components & connectors

⚫ Basic elements
Components, connectors, 
interfaces, attachments, 
styles

⚫ Style
Supported through 
predicates over instance 
models

⚫ Static & Dynamic Aspects
Static structural models 
annotated with behavioral 
specifications 

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Well-defined semantics limit 
ambiguity

⚫ Accuracy
Wright models can be translated 
into CSP for automated analysis

⚫ Precision
Detailed behavioral modeling 
possible

⚫ Viewpoints
Single structural/behavioral 
viewpoint plus styles

⚫ Viewpoint consistency
Style checking can be done 
automatically



Software Architecture: Foundations, Theory, and Practice

Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Domain- and Style-Specific ADLs

⚫ Notations we have surveyed thus far have been generically 
applicable to many types of software systems; however, some ADLs 
are domain-specific or style-specific, or at least optimized for 
describing architectures in a particular domain or style

⚫ These types of ADLs are important for several reasons:

Their scope is better tailored to stakeholder needs, since they 
target a particular group of them

They are able to leave out unnecessary details and excessively 
verbose constructs because there is little need for genericity; 
assumptions about the domain or style can be directly encoded 
into the ADL semantics

⚫ E.g., if a particular style mandates the use of a single kind of 
connector, there is no need to have a notion of connector in 
this ADL; users assume that all links use this connector 89
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Koala

⚫ Darwin-inspired notation for specifying product lines of 
embedded consumer-electronics devices

⚫ Advantages

Advanced product-line features let you specify many 
systems in a single model

Direct mapping to implemented systems promotes 
design and code reuse

⚫ Disadvantages

Limited to structural specification with additional 
focus on interfaces
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LL in Koala

91Single system Product line of two systems

interface IDataStore{

void setAltitude(int altitudeInMeters);

int getAltitude();

void setBurnRate(int newBurnRate);

int getBurnRate();

...

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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Koala Evaluation

92

⚫ Scope and purpose
Structures and interfaces of 
product lines of component-
based systems

⚫ Basic elements
Components, interfaces, 
elements for variation 
points: switches, diversity 
interfaces, etc.

⚫ Style
Product lines might be seen 
as very narrow styles

⚫ Static & Dynamic Aspects
Static structure only 

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Close mappings to implementation 
limit ambiguity

⚫ Accuracy
Close mappings to 
implementations should reveal 
problems

⚫ Precision
Structural decisions are fully 
enumerated but other aspects left 
out

⚫ Viewpoints
Structural viewpoint with explicit 
points of variation

⚫ Viewpoint consistency
N/A
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Weaves

⚫ An architectural style and notation for modeling systems 
of small-grain ‘tool fragments’ that communicate through 
data flows of objects

⚫ Can be seen as a variant of the pipe-and-filter style with 
three significant differences:

Weaves tool fragments process object streams 
instead of pipe-and-filter’s byte streams

Weaves connectors are explicitly sized object queues, 
whereas pipe-and-filter connectors are implicit pipes

Weaves tools can have multiple inputs and outputs, 
whereas pipe-and-filter components have one input 
and one output 93
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Weaves (cont’d)

⚫ Advantages

Extremely optimized notation

⚫ Even simpler than Darwin diagrams

Close mapping to implemented systems

⚫ Disadvantages

Addresses structure and data flows only
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Weaves Example

95
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Weaves Example (cont’d)

⚫ The component Tool Fragment 1 outputs a stream of 
objects to an explicit queue connector Q1, which forks the 
stream and forwards the objects to both Tool Fragment 2 
and Tool Fragment 3

⚫ The notation is graphical and minimalistic

Components are represented by shadowed boxes and 
queue connectors are represented by plain boxes

Configurations are expressed using directed arrows 
connecting components and connectors

⚫ This minimal notation is adequate to serve as a description 
notation for the Weaves style and the semantic interpretation 
of the few elements are provided by the style itself
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LL in Weaves

97
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LL in Weaves(cont’d)

⚫ Although the Weaves model is almost identical to the Darwin 
one, the meaning is different because a component in 
Weaves is not the same as a component in Darwin

⚫ The components in Weaves don’t communicate by means of 
request-response procedure calls, but instead through 
streams of objects

⚫ One notable difference from other models is the explicit 
presence of return channels

The fact that a request travels from User Interface to 
Calculation (through Q1) doesn’t imply that a response 

comes back along the same path; this response’s path 
must be explicitly specified and have its own queue (Q2)
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Augmenting Weaves

⚫ Weaves diagrams do not capture the protocol or kinds of 
data that flow across component boundaries

⚫ This could be rectified through, for example, additional 
natural language or more formal (e.g., CSP) protocol 
specifications

99

The connection from User Interface to Calculation (via Q1) carries objects 

that include a burn-rate and instruct the calculation component to calculate a new 

Lander state. 

The connection from Calculation to User Interface (via Q2) indicates when 

the calculation is complete and also includes the termination state of the application. 

The connections from User Interface and Calculation to Data Store (via 

Q3) carry objects that either update or query the state of the Lander. 

The connections back to User Interface and Calculation from Data Store

(via Q4) carry objects that contain the Lander state, and are sent out whenever the 

state of the Lander is updated.
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Weaves Evaluation
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⚫ Scope and purpose
Structures of components 
and connectors in the 
Weaves style

⚫ Basic elements
Components, queues, 
directed interconnections

⚫ Style
Weaves style implicit

⚫ Static & Dynamic Aspects
Static structure only

⚫ Dynamic Models
N/A, although there is a 1-1 
correspondence between 
model and implementation 
elements

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Meanings of Weaves elements 
are well-defined although 
important elements (e.g., 
protocols) are subject to 
interpretation

⚫ Accuracy
Syntactic (e.g., structural) errors 
easy to identify

⚫ Precision
Structural decisions are fully 
enumerated but other aspects 
left out

⚫ Viewpoints
Structural viewpoint

⚫ Viewpoint consistency
N/A



Software Architecture: Foundations, Theory, and Practice

AADL: The Architecture Analysis 
& Design Language

⚫ Notation and tool-set for modeling hardware/software systems, 
particularly embedded and real-time systems

⚫ Advantages

Allows detailed specification of both hardware and software 
aspects of a system

This detail is what gives AADL its power and analyzability

Automated analysis tools check interesting end-to-end properties 
of system

⚫ Disadvantages

Verbose; large amount of detail required to capture even simple 
systems

Emerging tool support and UML profile support
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LL in AADL

102

data lander_state_data

end lander_state_data;

bus lan_bus_type

end lan_bus_type;

bus implementation lan_bus_type.ethernet

properties

Transmission_Time => 1 ms .. 5 ms;

Allowed_Message_Size => 1 b .. 1 kb;

end lan_bus_type.ethernet;

system calculation_type

features

network : requires bus access 

lan_bus.calculation_to_datastore;

request_get    : out event port;

response_get   : in event data port lander_state_data;

request_store  : out event port lander_state_data;

response_store : in event port;

end calculation_type;

system implementation calculation_type.calculation

subcomponents

the_calculation_processor : 

processor calculation_processor_type;

the_calculation_process : process 

calculation_process_type.one_thread;
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LL in AADL (cont’d)
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connections

bus access network -> the_calculation_processor.network;

event data port response_get -> 

the_calculation_process.response_get;

event port the_calculation_process.request_get -> 

request_get;

event data port response_store -> 

the_calculation_process.response_store;

properties

Actual_Processor_Binding => reference

the_calculation_processor applies to 

the_calculation_process;

end calculation_type.calculation;

processor calculation_processor_type

features

network : requires bus access 

lan_bus.calculation_to_datastore;

end calculation_processor_type;

process calculation_process_type

features

request_get    : out event port;

response_get   : in event data port lander_state_data;

request_store  : out event data port lander_state_data;

response_store : in event port;

end calculation_process_type;
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LL in AADL (cont’d)
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thread calculation_thread_type

features

request_get    : out event port;

response_get   : in event data port lander_state_data;

request_store  : out event data port lander_state_data;

response_store : in event port;

properties

Dispatch_Protocol => periodic;

end calculation_thread_type;

process implementation calculation_process_type.one_thread

subcomponents

calculation_thread : thread client_thread_type;

connections

event data port response_get -> 

calculation_thread.response_get;

event port calculation_thread.request_get -> request_get;

event port response_store -> 

calculation_thread.response_store;

event data port request_store -> request_store;

properties

Dispatch_Protocol => Periodic;

Period => 20 ms;

end calculation_process_type.one_thread; 
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LL in AADL Explained a Bit

⚫ Note the level of detail at which the system is specified

A component (calculation_type.calculation) runs 

on…

A physical processor (the_calculation_processor), 

which runs…

A process (calculation_process_type.one_thread), 

which in turn contains…

A single thread of control (calculation_thread), all of 

which can make two kinds of request-response calls 
through…

Ports (request_get/response_get, 
request_store/response_store) over…

An Ethernet bus (lan_bus_type.Ethernet)

⚫ All connected through composition, port-mapping, and so on
105
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AADL Evaluation
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⚫ Scope and purpose
Interconnected multi-level 
systems architectures

⚫ Basic elements
Multitude – components, 
threads, hardware 
elements, configurations, 
mappings…

⚫ Style
N/A

⚫ Static & Dynamic Aspects
Primarily static structure but 
additional properties specify 
dynamic aspects

⚫ Dynamic Models
N/A

⚫ Non-Functional Aspects
N/A

⚫ Ambiguity
Most elements have concrete 
counterparts with well-known 
semantics

⚫ Accuracy
Structural as well as other 
interesting properties can be 
automatically analyzed

⚫ Precision
Many complex interconnected 
levels of abstraction and 
concerns

⚫ Viewpoints
Many viewpoints addressing 
different aspects of the system

⚫ Viewpoint consistency
Mappings and refinement can 
generally be automatically 
checked or do not overlap
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Continuing Our Survey
⚫ Generic approaches

Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Continuing Our Survey

⚫ Generic approaches
Natural language
PowerPoint-style modeling
UML, the Unified Modeling Language

⚫ Early architecture description languages
Darwin
Rapide
Wright

⚫ Domain- and style-specific languages
Koala
Weaves
AADL

⚫ Extensible architecture description languages
Acme
ADML
xADL
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Extensible ADLs
⚫ There is a tension between

The expressiveness of general-purpose ADLs and

The optimization and customization of more specialized 
ADLs

⚫ How do we get the best of both worlds?

Use multiple notations in tandem

⚫ Difficult to keep consistent, often means excessive 
redundancy

Overload an existing notation or ADL (e.g., UML profiles)

⚫ Increases confusion, doesn’t work well if the custom 
features don’t map naturally onto existing features

Add additional features we want to an existing ADL

⚫ But existing ADLs provide little or no guidance for this

⚫ Extensible ADLs attempt to provide such guidance
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Acme
⚫ Early general purpose ADL with support for 

extensibility through ‘properties’

⚫ Advantages

Structural specification capabilities similar to 
Darwin

Simple property structure allows for arbitrary 
decoration of existing elements

Tool support with AcmeStudio

⚫ Disadvantages

No way to add new views

Property specifications can become extremely 
complex and have entirely separate 
syntax/semantics of their own

110



Software Architecture: Foundations, Theory, and Practice

LL in Acme
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//Global Types

Property Type returnsValueType = bool;

Connector Type CallType = {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType; 

};

System LunarLander = {

//Components

Component DataStore = { 

Ports { getValues; storeValues; }

};

Component Calculation = {

Ports { calculate; getValues; storeValues; }

};

Component UserInterface = {

Ports { getValues; calculate; }

};

// Connectors

Connector UserInterfaceToCalculation : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Connector UserInterfaceToDataStore : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Acme (cont’d)
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Connector CalculationToDataStoreS : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = false;

}

Connector CalculationToDataStoreG : CallType {

Roles { callerRole; calleeRole; };

Property returnsValue : returnsValueType = true;

}

Attachments {

UserInterface.getValues to 

UserInterfaceToDataStore.callerRole;

UserInterfaceToDataStore.calleeRole to

DataStore.getValues;

UserInterface.getValues to 

UserInterfaceToDataStore.callerRole;

UserInterfaceToDataStore.calleeRole to

DataStore.getValues;

UserInterface.calculate to

UserInterfaceToCalculation.callerRole;

UserInterfaceToCalculation.calleeRole to

Calculation.calculate;

Calculation.storeValues to 

CalculationToDataStoreS.callerRole;

CalculationToDataStoreS.calleeRole to

DataStore.storeValues;

Calculation.getValues to

CalculationToDataStoreG.callerRole;

CalculationToDataStoreG.calleeRole to

DataStore.getValues;

};

} 

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Acme
⚫ The model is verbose, because:

Acme is domain neutral and its semantics make 
few assumptions that allow information to be 
conveyed implicitly

The intention is that the user doesn’t write code 
but the latter is generated from a graphical 
environment (AcmeStudio)

⚫ The basic model has only one property

Each procedure call connector is annotated with a 
property indicating whether or not the operation 
has a return value

This may be useful if the designer wants to use 
asynchronous communication: if a caller doesn't 
require a return value, it can continue executing 113
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LL in Acme (cont’d)
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Property Type StoreType = enum { file, 

relationalDatabase, objectDatabase };

Component DataStore = {

Ports {

getValues; storeValues; 

}

Property storeType : StoreType = 

relationalDatabase;

Property tableName : String = “LanderTable”;

Property numReplicas: int = 0;

}; 

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in Acme
⚫ Additional properties can add detail to the basic 

model

⚫ In the previous slide, an extended description of 
DataStore is defined, indicating that this 
component should store its data in a non-replicated 
table called LanderTable in a relational database

⚫ However, these particular names and values don’t 
have a universal meaning

Tools and stakeholders must be informed about 
which properties to expect and how to process 
their values
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Acme Evaluation

116

⚫ Scope and purpose
Structures of components 
and connectors with 
extensible properties

⚫ Basic elements
Components, connectors, 
interfaces, hierarchy, 
properties

⚫ Style
Through type system

⚫ Static & Dynamic Aspects
Static structure is modeled 
natively, dynamic aspects in 
properties

⚫ Dynamic Models
AcmeLib allows 
programmatic model 
manipulation

⚫ Non-Functional Aspects
Through properties

⚫ Ambiguity
Meanings of elements subject to 
some interpretation, properties 
may have arbitrary level of 
rigor/formality

⚫ Accuracy
Checkable syntactically, via type 
system, and properties by 
external tools

⚫ Precision
Properties can increase precision 
but cannot add new elements

⚫ Viewpoints
Structural viewpoint is native, 
properties might provide 
additional viewpoints

⚫ Viewpoint consistency
Via external tools that must be 
developed
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ADML

⚫ Effort to standardize the concepts in Acme and leverage 
XML as a syntactic base

⚫ Advantages

XML parsers and tools readily available

Added some ability to reason about types of 
properties with meta-properties

⚫ Disadvantages

Did not take advantage of XML extension mechanisms 
and instead provides extensibility by simply encoding 
Acme’s name-value pair properties in XML
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LL in ADML

⚫ Similar to Acme, except in an XML format

118

<Component ID=”datastore” name=”Data Store”>

<ComponentDescription>

<ComponentBody>

<Port ID=”getValues”   name=”getValues”/>

<Port ID=”storeValues” name=”storeValues”/>

</ComponentBody>

</ComponentDescription>

</Component> 

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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xADL

⚫ Modular XML-based ADL intended to maximize 
extensibility both in notation and tools

⚫ Advantages

Growing set of generically useful modules 
available already

Tool support in ArchStudio environment

Users can add their own modules via well-defined 
extensibility mechanisms

⚫ Disadvantages

Extensibility mechanisms can be complex and 
increase learning curve

Heavy reliance on tools
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xADL (cont’d)

⚫ The syntax in xADL is defined in a set of XML 
schemas

⚫ XML schemas are similar to DTDs but the latter 
define document syntax through production rules and 
the former define syntax through a set of data types

⚫ xADL is the composition of all the xADL schemas, 
where each such schema adds a set of features to 
the language; this has the following advantages:

Incremental adoption–users can use as few or as 
many features make sense in their domain

Divergent extension–users can extend the 
language to tailor it to their own purposes

Feature reuse–schemas can be shared among 
projects that need common features 120
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xADL (cont’d)

⚫ Because xADl can be extended with unforeseen 
constructs, it requires its own tools to cope with a 
notation whose syntax may change from project to 
project

⚫ The xADL Binding Library

A data binding library consisting of a set of Java 
classes that correspond to xADL data types

A program can query and manipulate instances of 
these classes to explore and change an xADL
document

⚫ Apigen

A xADL data binding library generator: given a set 
of XLM schemas, it generates the complete data 
binding library with support for these schemas 121
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xADL and xADLite

⚫ The native storage format of xADl is in an XML 
format which is very verbose

⚫ This is also because xADL makes extensive use of 
XML namespaces and multiple schemas that add a 
significant amount of “housekeeping” data to xADL
documents

⚫ A simple component in xADL XML format would look 
like the code in the following slide
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xADL and xADLite (cont’d)
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<types:component xsi:type="types:Component" 

types:id="myComp">

<types:description xsi:type="instance:Description">

MyComponent

</types:description> 

<types:interface xsi:type="types:Interface" 

types:id="iface1">

<types:description xsi:type="instance:Description">

Interface1

</types:description>

<types:direction xsi:type="instance:Direction">

inout

</types:direction>

</types:interface>

</types:component>

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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xADL and xADLite (cont’d)

⚫ Even if we remove namespace and XML-typing 
information, the result is still verbose

⚫ There is an alternative, more syntactically terse 
format, called xADLite

⚫ The transformation between xADL and xADLite is 
lossless and no information is lost in translating a 
document from one formalism to the other

⚫ The same component in xADLite looks now like the 
code in the following slide
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xADL and xADLite (cont’d)
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component{

id = "myComp";

description = "MyComponent"; 

interface{

id = "iface1";

description = "Interface1";

direction = "inout";

}

}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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LL in xADL

126
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LL in xADL (cont’d)

⚫ The visual modeling of the Lunar Lander in xADL
using the graphical editor Archipelago is shown in the 
previous slide

⚫ As with Acme, the key notational contribution of 
xADL lies in its extensibility, which goes beyond 
adding properties to the core constructs

⚫ xADL has no fundamental separation between core 
concepts and extensions

It allows the addition of completely new syntactic 
elements as well as structural extensions to 
existing elements

⚫ The textual form of LL in xADl might look like the one 
in the following slides
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LL in xADL (cont’d)

128
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LL in xADL (cont’d)
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LL in xADL (cont’d)
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Demonstrating the Extension of a 
Schema in xADL

131
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Demonstrating the extension of a 
schema in xADL(cont’d)
⚫ The specification in the previous slide says that a 

component has the following:

One identifier (a string attribute)

One description (a string element)

Zero or more interfaces

An optional link to its type

⚫ By adding another schema, we can create an 
extended form of a component that can be used to 
capture more information about where the 
component will store data

⚫ This is shown on the next slide 
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Demonstrating the Extension of a 
Schema in xADL (cont’d)
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Demonstrating the Extension of a 
Schema in xADL(cont’d)
⚫ This extension adds several new capabilities and defines:

A new ADT called Database, indicating we are going 
to define many different subtypes of Database that 
will be substitutable whenever a Database is needed

Two concrete subtypes of Database

⚫ RelationalDatabase with a table name and a 
number of replicas

⚫ FileDatabase with a file name and an optional 
host name on which the file resides

An extension to the plain xADL Component datatype

⚫ A DatabaseComponent has everything that a 
component does, plus a Database element

⚫ Because both RelationalDatabase and 
FileDatabase are Databases, either one can be 
used here

134



Software Architecture: Foundations, Theory, and Practice

Demonstrating the Extension of a 
Schema in xADL(cont’d)
⚫ We can now extend the original xADL description of Data 

Store in Lunar Lander

⚫ When the new DatabaseComponent schema is ready, 
the Apigen tool can generate a new data binding library 
that supports the new constructs

⚫ Sharing of schemas are possible and encouraged

The DatabaseComponent schema can be reused in 
different projects

⚫ The extended Lunar Lander Data Store component is 
shown on the next slide
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Demonstrating the Extension of a 
Schema in xADL (cont’d)
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xADL Tools

137

xADL 2.0

Schemas

DOM Implementation
(e.g., Crimson, Xerces)

Manipulates XML documents

as data structure of elements

and attributes

DOM Implementation
(e.g., Crimson, Xerces)

Manipulates XML documents

as data structure of elements

and attributes

XSV
Off-the-shelf XML 

schema validator

XSV
Off-the-shelf XML 

schema validator

XML Spy
Off-the-shelf XML 

development

environment

XML Spy
Off-the-shelf XML 

development

environment

Data Binding Library
Provides object-oriented

interface to xADL

documents

Data Binding Library
Provides object-oriented

interface to xADL

documents

ArchEdit
Tree-based syntax-

directed editor

for xADL documents

ArchEdit
Tree-based syntax-

directed editor

for xADL documents

xArchADT
Façade interface

for data binding

library

xArchADT
Façade interface

for data binding

library

Apigen
XML schema to 

Java data 

binding generator

Apigen
XML schema to 

Java data 

binding generator

(Other Tools)
Tools that implement 

xADL semantics

(Other Tools)
Tools that implement 

xADL semantics

parses/edits

uses

uses

parses

generates

validates

edits

wraps

usesuse

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
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ArchStudio Environment

138
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xADL Schemas (Modules)
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Schema Features 

Structure & 

Types 

Defines basic structural modeling of prescriptive 

architectures: components, connectors, interfaces, 

links, general groups, as well as types for components, 

connectors, and interfaces. 

Instances 

Basic structural modeling of descriptive architectures: 

components, connectors, interfaces, links, general 

groups. 

Abstract 

Implementation 

Mappings from structural element types (component 

types, connector types) to implementations. 

Java 

Implementation 

Mappings from structural element types to Java 

implementations. 

Options 

Allows structural elements to be declared optional—

included or excluded from an architecture depending 

on specified conditions. 

Variants 

Allows structural element types to be declared 

variant—taking on different concrete types depending 

on specified conditions. 

Versions 

Defines version graphs; allows structural element types 

to be versioned through association with versions in 

version graphs. 
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xADL Evaluation
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⚫ Scope and purpose
Modeling various 
architectural concerns with 
explicit focus on extensibility

⚫ Basic elements
Components, connectors, 
interfaces, links, options, 
variants, versions, …, plus 
extensions

⚫ Style
Limited, through type system

⚫ Static & Dynamic Aspects
Mostly static views with 
behavior and dynamic 
aspects provided through 
extensions

⚫ Dynamic Models
Models can be manipulated 
programmatically

⚫ Non-Functional Aspects
Through extensions

⚫ Ambiguity
Base schemas are permissive; 
extensions add rigor or formality 
if needed

⚫ Accuracy
Correctness checkers included in 
ArchStudio and users can add 
additional tools through well-
defined mechanisms

⚫ Precision
Base schemas are abstract, 
precision added in extensions

⚫ Viewpoints
Several viewpoints provided 
natively, new viewpoints through 
extensions

⚫ Viewpoint consistency
Checkable through external tools 
and additional consistency rules
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When Systems Become Too 
Complex to Model
⚫ The LL architecture is a relatively simple one with a 

finite number of well-known components that run on 
a single host

⚫ However, gigantic and diverse applications cannot be 
modeled with some of the techniques we saw

‘Agile’ systems that are not explicitly designed 
above the level of code modules

Extremely large, complex, or dynamic systems 
(e.g., the Web)

⚫ The approach to be taken here is to abstract away 
aspects of the complexity to reach a point where 
modeling is feasible but also still useful
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When Systems Become Too 
Complex to Model (cont’d)
⚫ Strategies to consider in this case include the following:

Model limited aspects of the architecture

⚫ E.g., you cannot model the Web but you can model 
specific interaction patterns

Model an instance

⚫ E.g., you cannot model the Web but you can model 
only the portion of the system that is relevant

Exploit regularity

⚫ Often extremely large systems have low 
heterogeneity, where large portions of the system 
look almost exactly like other portions of the same 
system; these portions can be modeled once (as in 
the case of the example in Darwin) 142
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When Systems Become Too 
Complex to Model (cont’d)
⚫ Strategies to consider in this case include the 

following (cont’d)

Model the style

⚫ The Web is based on the REST architecture; 
instead of modeling the Web as an application, 
consider modeling the REST style instead

Model the protocol

⚫ The Web is, in large measure, characterized by 
adherence to the HTTP protocol

⚫ Some notations we examined in this chapter 
(such as Wright) can be used to to model 
protocol details 143
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Summary

⚫ We have introduced architecture modeling and identified 
many of the issues that occur in the modeling process

⚫ We have also introduced and provided examples of 
many architecture description notations

⚫ The preceding overview optimized for breadth rather 
than depth

Semantics and capabilities of many of these notations 
are quite deep and subtle

Some even have entire books written about them

You are encouraged to investigate individual 
notations more deeply
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Summary (cont’d)

⚫ No single notation–even an extensible notation–is 
sufficient to capture all the aspects of an architecture

⚫ The following table groups the various approaches
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