
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Connectors

Software Architecture
Chapter 5

Software Architecture: Foundations, Theory, and Practice

What is a Software Connector?

⚫ Architectural element that models

Interactions among components

Rules that govern those interactions

⚫ Simple interactions

Procedure calls

Shared variable access

⚫ Complex & semantically rich interactions

Client-server protocols

Database access protocols

Asynchronous event multicast

⚫ Each connector provides

Interaction duct(s)

Transfer of control and/or data
2

Software Architecture: Foundations, Theory, and Practice

Where are Connectors in Software
Systems?

3

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

⚫ Connectors in software system implementations

Frequently no dedicated code

Frequently no identity

Typically, do not correspond to compilation units

Distributed implementation

⚫ Across multiple modules

⚫ Across interaction mechanisms

4

Implemented vs. Conceptual
Connectors

Software Architecture: Foundations, Theory, and Practice

Implemented vs. Conceptual
Connectors (cont’d)

⚫ Connectors in software architectures

First-class entities

Have identity

Describe all system interaction

Entitled to their own specifications & abstractions

5

Software Architecture: Foundations, Theory, and Practice

Reasons for Treating Connectors
Independently

⚫ Connector Component

Components provide application-specific functionality

Connectors provide application-independent
interaction mechanisms

⚫ Interaction abstraction and/or parameterization

⚫ Specification of complex interactions

Binary vs. N-ary

Asymmetric vs. Symmetric

Interaction protocols

6

Software Architecture: Foundations, Theory, and Practice

⚫ Localization of interaction definition
⚫ Extra-component system (interaction) information
⚫ Component independence
⚫ Component interaction flexibility

7

Reasons for Treating Connectors
Independently (cont’d)

Software Architecture: Foundations, Theory, and Practice

Benefits of First-Class Connectors

⚫ Separate computation from interaction

⚫ Minimize component interdependencies

⚫ Support software evolution

At component-, connector-, & system-level

⚫ Potential for supporting dynamism

⚫ Facilitate heterogeneity

⚫ Become points of distribution

⚫ Aid system analysis & testing

8

Software Architecture: Foundations, Theory, and Practice

An Example of Explicit Connectors

9

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

An Example of Explicit Connectors
(cont’d)

⚫ A simple pipe-and-filter architecture consisting of two
filters, A and B, communicate via untyped data streams
through the unidirectional pipe connector P

⚫ This pipe allows interaction via unformatted streams,
consisting of a single interaction channel or ‘duct’,
facilitating unidirectional data transfer, and with
cardinality 1, i.e., single sender and single receiver

⚫ Also, the components don’t know of each other and
there is no buffering of data: if A sends the data at a
time that B cannot receive it, the data is lost

10

Software Architecture: Foundations, Theory, and Practice

An Example of Explicit Connectors
(cont’d)

⚫ Let’s assume now that B also wants to send information
to A (e.g., ack. of having received data from A)

⚫ Also, we want to ensure delivery of data: if B cannot
receive the data sent by A, the pipe retries until the data

is received

⚫ For the first change, a second pipe would be needed
from B to A

⚫ For the second change, we could introduce buffering

⚫ More modifications (e.g., adding more components)
would require further addition or replacement of pipes,
which would result in the system being down for a
considerable amount of time 11

Software Architecture: Foundations, Theory, and Practice

An Example of Explicit Connectors
(cont’d)

⚫ A better solution is to change the nature of the data
from unformatted byte streams to discrete, typed
packets that can be processed more efficiently

⚫ However, for this solution, pipes don’t suffice and what
is needed is an event bus, which is able to create ducts
between interacting components on the fly, and allows
one sender to communicate with multiple observers

⚫ Event buses allow components to be added or removed,
and to subscribe to receive certain events, at any time
during a system’s execution

12

Software Architecture: Foundations, Theory, and Practice

An Example of Explicit Connectors
(cont’d)

13

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

An event-based
architecture, where
components A and B

communicate via typed
discrete data packets
(events) through an event
bus connector, which allows on the fly system
modification, e.g., the addition of a new component C

Software Architecture: Foundations, Theory, and Practice

Connector Foundations

⚫ The building blocks of every connector are the primitives
for managing in a system

The flow of control (changing the processor program
counter)

The flow of data (performing memory access)

⚫ Also, every connector maintains one or more channels
(‘ducts’) that link the interacting components and
support the above-mentioned flows

14

Software Architecture: Foundations, Theory, and Practice

Simple Connectors

⚫ They provide their service simply by forming ducts
between components (e.g., module linkers)

⚫ They are typically implemented in programming
languages

⚫ They typically provide only one type of interaction
service

15

Software Architecture: Foundations, Theory, and Practice

Complex (or very Complex)
Connectors
⚫ They augment ducts with some combination of data and

control flow to provide richer interaction services

⚫ Can also have an internal architecture that includes
computation and information storage

E.g., a load balancing connector would switch
incoming traffic based on the current/past load state
of components

⚫ Composite connectors are achieved through composition
of several connectors (and possibly components), and
provided for use as libraries or frameworks

⚫ It is important to be able to reason about their
underlying, low-level interaction mechanisms 16

Software Architecture: Foundations, Theory, and Practice

A Framework for Studying
Software Connectors

17

Software Architecture: Foundations, Theory, and Practice

A Connector Classification
Framework
⚫ Each connector is identified by its primary service

category

⚫ The characteristics most commonly observed among
connectors are positioned towards the top of the
framework

⚫ Variations are located towards the bottom

⚫ The framework comprises service categories, connector
types, dimensions (and possibly their subdimensions),
and values for the dimensions

⚫ A service category represents the broad interaction role
the connector fulfils

18

Software Architecture: Foundations, Theory, and Practice

A Connector Classification
Framework (cont’d)
⚫ Connector types discriminate among connectors based

on the way in which the interaction services are realized

⚫ Dimensions (and possibly their subdimensions) capture
the architecturally relevant details of each connector

⚫ A set of values is associated with a dimension (or
subdimension)

⚫ A connector instance can take a number of values from
different types

19

Software Architecture: Foundations, Theory, and Practice

Software Connector Roles

⚫ Locus of interaction among set of components

⚫ Protocol specification (sometimes implicit) that defines its
properties

Types of interfaces it is able to mediate

Assurances about interaction properties

Rules about interaction ordering

Interaction commitments (e.g., performance)

⚫ Roles (‘categories’ in the previous classification)

Communication

Coordination

Conversion

Facilitation 20

Software Architecture: Foundations, Theory, and Practice

Connectors as Communicators

⚫ Main role associated with connectors and supporting
transmission of data

⚫ Supports

Different communication mechanisms

⚫ E.g., procedure call, RPC, shared data access, message
passing

Constraints on communication structure/direction

⚫ E.g., pipes

Constraints on quality of service

⚫ E.g., persistence

⚫ Separates communication from computation

⚫ May influence non-functional system characteristics

E.g., performance, scalability, security
21

Software Architecture: Foundations, Theory, and Practice

Connectors as Coordinators

⚫ Support transfer of control among components

⚫ Components interact by passing the thread of execution
to each other

⚫ Control delivery of data

⚫ Separates control from computation

⚫ Orthogonal to communication, conversion, and
facilitation

Elements of control are in communication, conversion
and facilitation

⚫ E.g., function calls and method invocations or signals
and load balancing connectors

22

Software Architecture: Foundations, Theory, and Practice

Connectors as Converters

⚫ Enable interaction of independently developed,
heterogeneous or mismatched components

⚫ Mismatches caused by incompatible assumptions about

Type

Number

Frequency

Order of interaction among components

⚫ Examples of converters

Adaptors for different data formats

Wrappers for legacy components
23

Software Architecture: Foundations, Theory, and Practice

Connectors as Facilitators

⚫ Enable interaction of components intended to
interoperate

Mediate and streamline interaction

⚫ Govern access to shared information

⚫ Ensure proper performance profiles

E.g., load balancing

⚫ Provide synchronization mechanisms

Critical sections

Monitors

24

Software Architecture: Foundations, Theory, and Practice

Connector Types and their
Variation Dimensions

⚫ Connectors can be further classified based on the way in
which they realize interaction services

Procedure call

Event

Data Access

Linkage

Stream

Arbitrator

Adaptor

Distributor
25

Software Architecture: Foundations, Theory, and Practice

Procedure Call Connectors

⚫ They are coordination connectors that model the flow of
control among components

⚫ They are also communication connectors, transferring
data among interacting components by means of
parameters and return values

⚫ Examples are OO methods, fork and exec in Unix, RPC

⚫ The space of options available to a software engineer is
shown in the next diagram. E.g., a procedure (method)
call in Java implements data transfer of parameters by
reference, it may have a return value, it will have a
single entry point at the start of the invoked method, it
will be a result of explicit invocation, etc. 26

Software Architecture: Foundations, Theory, and Practice

Procedure Call Connectors Type
and Variations

27

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Event Connectors

⚫ They are similar to procedure call connectors, in that
they affect the flow of control among components, thus
providing coordination services

⚫ Once an event connector learns about the occurrence of
an event, it generates event notifications to all interested
parties and yields control to the components for
processing these events

⚫ Components can react at the occurrence of a single
event or a combination of them

⚫ Event connectors also provide communication services,
in the sense that an event may carry information (e.g.,
time and place of occurrence) 28

Software Architecture: Foundations, Theory, and Practice

Event Connectors (cont’d)

⚫ Event connectors are different from procedure calls in
that virtual connectors can be formed

Components may dynamically register and unregister
their interest to receive certain events

⚫ In distributed systems, typical dimensions are causality,
atomicity, synchronicity, etc.

⚫ Also, events may be generated by hardware (e.g.,
interrupts, page faults, etc.) and processed by software

⚫ The cardinality of a multicasting event connector will be
a single producer and multiple observer components,
delivery of data will be done once, and its synchronicity
may be asynchronous 29

Software Architecture: Foundations, Theory, and Practice

Event Connectors Type and
Variations

30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Data Access Connectors

⚫ They allow components to access data maintained by a
data store component, so they provide communication
services

⚫ Data access may require preparation of the data store
and translation in case of differences between the
format of the required data and that of the stored data

⚫ E.g., query mechanisms in SQL for database access,
heap and stack memory access, and information caching

⚫ Such a connector could enable global access, allow
changing (mutating) of data, provide persistent access
through file I/O, have a cardinality of 1 for defining the
data and N for using the data, etc. 31

Software Architecture: Foundations, Theory, and Practice

Data Access Connectors Type and
Variations

32

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Linkage Connectors

⚫ They provide facilitation services, in the sense that they tie system
components together and establish ducts

⚫ Once ducts have been established, a linkage connector may
disappear or remain in place to assist in the system’s evolution

⚫ Reference to linked components may be implicit or explicit

⚫ Granularity refers to the size of components and level of detail to
establish a linkage

Unit specifies only one component (e.g., Make in Unix)

Syntactic establishes links between variables, procedures,
functions, constants, and types and can be used in static
analysis

Semantic specifies how the linked components are supposed to
interact

33

Software Architecture: Foundations, Theory, and Practice

Linkage Connectors Type and
Variations

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Stream Connectors

⚫ They provide communication services by means of
transferring large amounts of data

⚫ They can be combined with other connector types (e.g.,
data access connectors) to provide composite connectors
for database and file storage access or event connectors
to multiplex the delivery of a large number of events

⚫ E.g., Unix pipes, TCP/IP sockets, client-server protocols

⚫ A stream connector may be unnamed (as in Unix pipes),
may provide asynchronous, remote interaction, may
guarantee one delivery, may have cardinality 1 (single
sender, single receiver, etc.)

35

Software Architecture: Foundations, Theory, and Practice

Stream Connectors Type and
Variations

36

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Arbitrator Connectors

⚫ They provide facilitation services by streamlining system
operations and resolving conflicts, typically in cases of
component interaction where the components cannot
make assumptions about the needs and state of other
components

⚫ They also provide coordination services, such as support
for shared memory access supporting synchronization
and concurrency control

⚫ They also provide facilities for SLA negotiation,
scheduling, and load balancing services, as well as
support for reliability, safety and security

37

Software Architecture: Foundations, Theory, and Practice

Arbitrator Connectors Type and
Variations

38

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Adaptor Connectors

⚫ They provide facilities to support interaction between
components that have not been designed to interoperate

⚫ They provide conversion services in the form of
matching communication policies and interaction
protocols

⚫ They are necessary for interoperation of components in
heterogeneous environments (e.g., different
programming languages or computer platforms)

⚫ Optimization of component interaction can be performed
by means of conversion

An RPC call converted to a local one, if the interacting
components are in the same process 39

Software Architecture: Foundations, Theory, and Practice

Adaptor Connectors Type and
Variations

40

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Distributor Connectors

⚫ They provide facilitation services by performing the
identification of interaction paths and subsequent routing
of communication and coordination information among
components

⚫ They never exist by themselves, but provide assistance
to other connectors, such as streams and procedure calls

⚫ Distributed systems exchange information using
distributor connectors

⚫ E.g., DNS, routing, switching, etc.

⚫ They play an important role in resource naming,
scalability, survivability, data delivery, etc.

41

Software Architecture: Foundations, Theory, and Practice

Distributor Connectors Type and
Variations

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Discussion

⚫ Connectors allow modeling of arbitrarily complex
interactions

⚫ Connector flexibility aids system evolution

Component addition, removal, replacement,
reconnection, migration

⚫ Support for connector interchange is desired

Aids system evolution

May not affect system functionality

43

Software Architecture: Foundations, Theory, and Practice

Discussion (cont’d)

⚫ Libraries of OTS connector implementations allow
developers to focus on application-specific issues

⚫ Difficulties

Rigid connectors

Connector “dispersion” in implementations

⚫ Key issue

Performance vs. flexibility

44

Software Architecture: Foundations, Theory, and Practice

Role and Challenge of Software
Connectors

45

Attach adapter to A

Maintain multiple

versions of A

or B

Make B multilingualChange A’s form to B’s form

Provide B with

import/export converter

Separate B’s “essence”

from its packaging

Publish abstraction

of A’s form

Introduce

intermediate form

Transform on the fly

What is the right answer?
Negotiate to find

common form for A and B

How do we enable

components A and B to interact?

Software Architecture: Foundations, Theory, and Practice

How Does One Select a Connector?

⚫ Determine a system’s interconnection and interaction
needs

Software interconnection models can help

⚫ Determine roles to be fulfilled by the system’s connectors

Communication, coordination, conversion, facilitation

⚫ For each connector

Determine its appropriate type(s)

Determine its dimensions of interest

Select appropriate values for each dimension

⚫ For multi-type, i.e., composite connectors

Determine the atomic connector compatibilities

46

Software Architecture: Foundations, Theory, and Practice

Simple Example

⚫ System components will execute in two processes on the
same host

Mostly intra-process

Occasionally inter-process

⚫ The interaction among the components is synchronous

⚫ The components are primarily computation-intensive

There are some data storage needs, but those are
secondary

47

Software Architecture: Foundations, Theory, and Practice

Simple Example (cont’d)

⚫ Select procedure call connectors for intra-process
interaction

⚫ Combine procedure call connectors with distributor
connectors for inter-process interaction

RPC

⚫ Select the values for the different connector dimensions

What are the appropriate values?

What values are imposed by your favorite
programming language(s)?

48

Software Architecture: Foundations, Theory, and Practice

Procedure Call Connectors
Revisited

49

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Distributor Connectors Revisited

50

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Two Connector Types in Tandem

51

Select the

appropriate

values for PC

and RPC!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Composite Distribution Connectors

⚫ These connectors distribute large amounts of content
(e.g., music, movies, scientific data, etc.) over, for
example, Internet

⚫ They can be described as different combinations of six of
the connector types presented before

⚫ Each distribution connector performs some form of data
access, involving a stream-based reading/packaging of
data and distribution of the latter to its users

⚫ Some connector classes are invoked via procedure calls
(e.g., client-server) while others are invoked via events
or arbitration (e.g., P2P-based)

52

Software Architecture: Foundations, Theory, and Practice

Composite Distribution Connectors
Choices and Relationships

53

Software Architecture: Foundations, Theory, and Practice

Software Interconnection Models
Revisited

⚫ Interconnection models (IM) as defined by Perry

Unit interconnection

Syntactic interconnection

Semantic interconnection

⚫ All three are present in each system

⚫ Are all equally appropriate at architectural level?

54

Software Architecture: Foundations, Theory, and Practice

Unit Interconnection
⚫ Defines relations between system’s units

Units are components (modules or files)

Basic unit relationship is dependency

⚫ Unit-IM = ({units},{“depends on”})

⚫ Examples

Determining context of compilation

⚫ e.g., C preprocessor

⚫ IM = ({files},{“include”})

Determining recompilation strategies

⚫ e.g., Make facility

⚫ IM = ({compile_units},{“depends on”,“has changed”})

System modeling

⚫ e.g., RCS, DVS, SVS, SCCS

⚫ IM = ({systems, files},{“is composed of”})
55

Software Architecture: Foundations, Theory, and Practice

Unit Interconnection
Characteristics

⚫ Coarse-grain interconnections

At level of entire components

⚫ Interconnections are static

⚫ Does not describe component interactions

Focus is exclusively on dependencies

56

Software Architecture: Foundations, Theory, and Practice

Syntactic Interconnection

⚫ Describes relations among syntactic elements of programming
languages

Variable definition/use
Method definition/invocation
⚫ IM = ({methods, types, variables, locations},

{“is def at”, “is set at”, “is used at”,
“is del from”, “is changed to”, “is added to”})

⚫ Examples
Automated software change management
⚫ E.g., Interlisp’s masterscope

Static analysis
⚫ E.g., Detection of unreachable code by compilers

Smart recompilation
⚫ Changes inside unit ➔ recompilation of only the changes

System modeling
⚫ Finer level of granularity than unit-IM

57

Software Architecture: Foundations, Theory, and Practice

Syntactic Interconnection
Characteristics

⚫ Finer-grain interconnections

At level of individual syntactic objects

⚫ Interconnections are static & dynamic

⚫ Incomplete interconnection specification

Valid syntactic interconnections may not be allowed
by semantics

Operation ordering, communication transactions

⚫ E.g., Pop on an empty stack

Violation of (intended) operation semantics

⚫ E.g., Trying to use calendar add operation to add
integers

58

Software Architecture: Foundations, Theory, and Practice

Semantic Interconnection

⚫ Expresses how system components are meant to be
used

Component designers’ intentions
⚫ Captures how system components are actually used

Component users’ (i.e., system builders’) intention
⚫ Interconnection semantics can be formally specified

Pre- & post-conditions

Dynamic interaction protocols (e.g., CSP, FSM)

⚫ IM = ({methods, types, variables, ..., predicates},
{“is set at”, “is used at”, “calls”, “called by”,

..., “satisfies”})

59

Software Architecture: Foundations, Theory, and Practice

Example of Semantic
Interconnection

connector Pipe =

role Writer = write → Writer П close → ✓

role Reader =

let ExitOnly = close → ✓

in let DoRead = (read → Reader

 read-eof → ExitOnly)

in DoRead П ExitOnly

glue = let ReadOnly = Reader.read → ReadOnly

 Reader.read-eof

→ Reader.close → ✓

 Reader.close → ✓

in let WriteOnly = Writer.write → WriteOnly

 Writer.close → ✓

in Writer.write → glue

 Reader.read → glue

 Writer.close → ReadOnly

 Reader.close → WriteOnly

60

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Semantic Interconnection
Characteristics
⚫ Builds on syntactic interconnections

⚫ Interconnections are static & dynamic

⚫ Complete interconnection specification

Specifies both syntactic & semantic
interconnection validity

⚫ Necessary at level of architectures

Large components

Complex interactions

Heterogeneity

Component reuse

⚫ What about ensuring other properties of interaction?

Robustness, reliability, security, availability, ... 61

Software Architecture: Foundations, Theory, and Practice

Composing Basic Connectors

⚫ In many systems a connector of multiple types may be
required to service (a subset of) the components

⚫ All connectors cannot be composed

Some are naturally interoperable

Some are incompatible

All are likely to require trade-offs

⚫ The composition can be considered at the level of
connector type dimensions and subdimensions

62

Software Architecture: Foundations, Theory, and Practice

Selecting Appropriate Connectors

1. Select the specific set of interacting components; focus only on
those components for which the desired connector is needed

2. Determine the interaction services the components need by
studying the components’ architectural descriptions and
considering implementation aspects

3. Determine a subset of the eight connector types that comprise the
initial candidate set for providing these services

4. Evaluate each connector type from the chosen subset based on the
details of the interaction requirements and eliminate those that
result in a suboptimal interaction solution

5. For each of the remaining candidate connector types, set the
values for the necessary dimensions and subdimensions and
identify the best (most natural) candidate connectors

63

Software Architecture: Foundations, Theory, and Practice

Connector Dimension Inter-
Relationships

⚫ Requires –

Choice of one dimension mandates the choice of another

⚫ Prohibits –

Two dimensions can never be composed into a single
connector

⚫ Restricts –

Dimensions are not always required to be used together

Certain dimension combinations may be invalid

⚫ Cautions –

Combinations may result in unstable or unreliable
connectors

64

Software Architecture: Foundations, Theory, and Practice

65

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Dimension Inter-Relationships

Software Architecture: Foundations, Theory, and Practice

Well Known Composite Connectors

⚫ Grid connectors (e.g., Globus)

Procedure call

Data access

Stream

Distributor

⚫ Peer-to-peer connectors (e.g., Bittorrent)

Arbitrator

Data access

Stream

Distributor

⚫ Client-server connectors

⚫ Event-based connectors
66

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Every software system employs connectors, frequently
many of them

⚫ In complex (distributed) systems, the connectors may
determine whether the desired system properties will be
met

⚫ At the most basic level, each connector establishes a
conduit/channel/duct between two or more components
to interact by exchanging data and/or control

⚫ The space of connectors can be better understood by
considering the role(s) played by a given connector and
the type(s) of interaction supported by the connector

⚫ At the same time, the large number of variation points for
each connector type (dimensions, subdimensions, values)
require that the (in)compatibilities among connectors be
considered carefully

67

