
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Designing
Architectures

Software Architecture

Chapter 4

Software Architecture: Foundations, Theory, and Practice

How Do You Design?

2

Where do architectures come from?

Method

1) Efficient in familiar terrain

2) Not always successful

3) Predictable outcome (+ & -)

4) Quality of methods varies

Creativity

1) Fun!

2) Fraught with peril

3) May be unnecessary

4) May yield the best

Software Architecture: Foundations, Theory, and Practice

Objectives

⚫ Creativity

Enhance your skillset

Provide new tools

⚫ Method

Focus on highly effective techniques

⚫ Develop judgment: when to develop novel solutions, and
when to follow established method

3

Software Architecture: Foundations, Theory, and Practice

Engineering Design Process

⚫ Feasibility stage: identifying a set of feasible concepts
for the design as a whole

⚫ Preliminary design stage: selection and development of
the best concept

⚫ Detailed design stage: development of engineering
descriptions of the concept

⚫ Planning stage: evaluating and altering the concept to
suit the requirements of production, distribution,
consumption and product retirement

4

Software Architecture: Foundations, Theory, and Practice

Potential Problems

⚫ If the designer is unable to produce a set of feasible
concepts, progress stops

⚫ As problems and products increase in size and
complexity, the probability that any one individual can
successfully perform the first steps decreases

⚫ The standard approach does not directly address the
situation where system design is at stake, i.e., when
relationship between a set of products is at issue

⚫ → As complexity increases or the experience of the
designer is not sufficient, alternative approaches to the
design process must be adopted

5

Software Architecture: Foundations, Theory, and Practice

Alternative Design Strategies

⚫ Standard

Linear model described above

⚫ Cyclic

Process can revert to an earlier stage

⚫ Parallel

Independent alternatives are explored in parallel

⚫ Adaptive (“lay tracks as you go”)

The next design strategy of the design activity is decided
at the end of a given stage

⚫ Incremental

Each stage of development is treated as a task of
incrementally improving the existing design

6

Software Architecture: Foundations, Theory, and Practice

Identifying a Viable Strategy

⚫ Use fundamental design tools: abstraction and
modularity

But how?

⚫ Inspiration, where inspiration is needed; predictable
techniques elsewhere

But where is creativity required?

⚫ Applying own experience or experience of others

7

Software Architecture: Foundations, Theory, and Practice

The Tools of “Software
Engineering 101”

⚫ Abstraction

Abstraction(1): look at details, and abstract “up” to
concepts

Abstraction(2): choose concepts, then add detailed
substructure, and move “down”

⚫ Example: design of a stack class

⚫ Separation of concerns

8

Software Architecture: Foundations, Theory, and Practice

A Few Definitions… from the OED
Online

⚫ Abstraction: “The act or process of separating in thought, of
considering a thing independently of its associations; or a substance
independently of its attributes; or an attribute or quality
independently of the substance to which it belongs.”

⚫ Reification: “The mental conversion of … [an] abstract concept into
a thing.”

⚫ Deduction: “The process of drawing a conclusion from a principle
already known or assumed; spec. in Logic, inference by reasoning
from generals to particulars; opposed to INDUCTION.”

⚫ Induction: “The process of inferring a general law or principle from
the observation of particular instances (opposed to DEDUCTION,
q.v.).”

9

Software Architecture: Foundations, Theory, and Practice

Abstraction and the Simple
Machines

⚫ What concepts should be chosen at the outset of a
design task?

One technique: Search for a “simple machine” that
serves as an abstraction of a potential system that
will perform the required task

For instance, what kind of simple machine makes a
software system embedded in a fax machine?

⚫ At core, it is basically just a little state machine

⚫ Simple machines provide a plausible first conception of
how an application might be built

⚫ Every application domain has its common simple
machines

10

Software Architecture: Foundations, Theory, and Practice

Simple Machines

11

Domain Simple Machines

Graphics Pixel arrays

Transformation matrices

Widgets

Abstract depiction graphs

Word processing Structured documents

Layouts

Process control Finite state machines

Income Tax Software Hypertext

Spreadsheets

Form templates

Web pages Hypertext

Composite documents

Scientific computing Matrices

Mathematical functions

Banking Spreadsheets

Databases

Transactions

Software Architecture: Foundations, Theory, and Practice

Choosing the Level and Terms of
Discourse

⚫ Any attempt to use abstraction as a tool must choose a level of
discourse, and once that is chosen, must choose the terms of
discourse

⚫ Alternative 1: initial level of discourse is one of the application as a
whole (step-wise refinement)

⚫ Alternative 2: work, initially, at a level lower than that of the whole
application

Once several such sub-problems are solved, they can be
composed together to form an overall solution

⚫ Alternative 3: work, initially, at a level above that of the desired
application

E.g., handling simple application input with a general parser

12

Software Architecture: Foundations, Theory, and Practice

Separation of Concerns

⚫ Separation of concerns is the subdivision of a problem
into (hopefully) independent parts

The interface of an ATM is different from the logic of
handling a bank account

⚫ The difficulties arise when the issues are either actually
or apparently intertwined

⚫ Separation of concerns frequently involves many
tradeoffs

⚫ Total independence of concepts may not be possible

⚫ Key example from software architecture: separation of
components (computation) from connectors
(communication)

13

Software Architecture: Foundations, Theory, and Practice

The Grand Tool: Refined
Experience

⚫ Experience must be reflected upon and refined

⚫ The lessons from prior work include not only the lessons
of successes, but also the lessons arising from failure

⚫ Learn from success and failure of other engineers

Literature

Conferences

⚫ Experience can provide that initial feasible set of
“alternative arrangements for the design as a whole”

⚫ Thousands of systems development experience has
yielded many approaches and lessons, from DSSAs to
simple programming languages design patterns

14

Software Architecture: Foundations, Theory, and Practice

Patterns, Styles, and DSSAs

15

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Patterns, Styles, and DSSAs
(cont’d)

⚫ The horizontal axis refers to the scope of applicability of the
body of knowledge, ranging from design patterns focusing on
object-oriented programming techniques to DSSAs that deal
with complete applications

⚫ The vertical axis reflects the amount of domain knowledge
represented by (or encoded within) the body of knowledge,
ranging from design patterns that encode small amounts of
knowledge but are very generally applicable to a variety of
applications, to DSSAs that encode substantial knowledge
about the design of a specific domain’s applications but
cannot be used for other domains

⚫ Note that these distinctions are blurry and the boundaries in
the diagram are fuzzy 16

Software Architecture: Foundations, Theory, and Practice

Domain-Specific Software
Architectures

⚫ A DSSA is an assemblage of software components

Specialized for a particular type of task (domain)

Generalized for effective use across that domain, and

Composed in a standardized structure (topology) effective
for building successful applications

⚫ Since DSSAs are specialized for a particular domain, they are
only of value if one exists for the domain wherein the
engineer is tasked with building a new application

⚫ DSSAs are the pre-eminent means for maximal reuse of
knowledge and prior development and hence for developing a
new architectural design

17

Software Architecture: Foundations, Theory, and Practice

Architectural Patterns

⚫ An architectural pattern is a set of architectural design
decisions that are applicable to a recurring design
problem and parameterized to account for different
software development contexts in which that problem
appears

⚫ Architectural patterns are similar to DSSAs but applied
“at a lower level” and within a much narrower scope

18

Software Architecture: Foundations, Theory, and Practice

State-Logic-Display: Three-Tiered
Pattern

⚫ Application Examples

Business applications
(business logic can be
banking transaction rules)

Multi-player games (business
logic implements game rules,
data store maintains the
game state, each player has
is own display)

Web-based applications
(business logic is a Web
server) 19

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Model-View-Controller (MVC)

⚫ Objective: Separation between information, presentation
and user interaction

⚫ When a model object value changes, a notification is
sent to the view and to the controller; so that the view
can update itself and the controller can modify the view
if its logic so requires

⚫ When handling input from the user the windowing
system sends the user event to the controller; if a
change is required, the controller updates the model
object

20

Software Architecture: Foundations, Theory, and Practice

Model-View-Controller

21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Sense-Compute-Control (SCC)

⚫ Typically, used in structuring embedded control
applications (and, more generally, real-time software)

⚫ A computer is embedded in some application; sensors
from various devices are connected to the computer and
may be sampled to determine their values

⚫ Also, attached to the computer are hardware actuators

⚫ The architectural pattern here is simply one of cycling
through the steps of reading all the sensor values,
executing a set of control laws or functions, and then
sending outputs to the various actuators

⚫ A clock is typically also used to control the timing of
these activities 22

Software Architecture: Foundations, Theory, and Practice

Sense-Compute-Control

23
Objective: Structuring embedded control applications

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

The Lunar Lander: A Long-Running
Example

⚫ A simple computer game that first appeared in the
1960’s

⚫ Simple concept:

You (the pilot) control the descent rate of the
Apollo-era Lunar Lander

⚫ Throttle setting controls descent engine

⚫ Limited fuel

⚫ Initial altitude and speed preset

⚫ If you land with a descent rate of < 5 frames
per second (fps): you win (whether there’s
fuel left or not)

“Advanced” version: joystick controls attitude &
horizontal motion 24

Software Architecture: Foundations, Theory, and Practice

The Lunar Lander Game

25

Software Architecture: Foundations, Theory, and Practice

Sense-Compute-Control LL

26

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectural Styles

⚫ A primary way of characterizing lessons from experience
in software system design

⚫ Reflect less domain specificity than architectural patterns

⚫ Useful in determining everything from subroutine
structure to top-level application structure

27

Software Architecture: Foundations, Theory, and Practice

Definitions of Architectural Style

⚫ Definition. An architectural style is a named collection of
architectural design decisions that:

Are applicable in a given development context

Constrain architectural design decisions that are specific to
a particular system within that context

Elicit beneficial qualities in each resulting system

⚫ Recurring organizational patterns & idioms

Established, shared understanding of common design
forms

Mark of mature engineering field

⚫ Shaw & Garlan

⚫ Abstraction of recurring composition & interaction
characteristics in a set of architectures

⚫ Taylor 28

Software Architecture: Foundations, Theory, and Practice

Basic Properties of Styles

⚫ A vocabulary of design elements

Component and connector types; data elements

E.g., pipes, filters, objects, servers

⚫ A set of configuration rules

Topological constraints that determine allowed
compositions of elements

E.g., a component may be connected to at most two
other components

⚫ A semantic interpretation

Compositions of design elements have well-defined
meanings

⚫ Possible analyses of systems built in a style
29

Software Architecture: Foundations, Theory, and Practice

Benefits of Using Styles

⚫ Design reuse

Well-understood solutions applied to new problems

⚫ Code reuse

Shared implementations of invariant aspects of a style

⚫ Understandability of system organization

A phrase such as “client-server” conveys a lot of information

⚫ Interoperability

Supported by style standardization

⚫ Style-specific analyses

Enabled by the constrained design space

⚫ Visualizations

Style-specific depictions matching engineers’ mental models
30

Software Architecture: Foundations, Theory, and Practice

Style Analysis Dimensions

⚫ What is the design vocabulary?

Component and connector types

⚫ What are the allowable structural patterns?

⚫ What is the underlying computational model?

⚫ What are the essential invariants of the style?

⚫ What are common examples of its use?

⚫ What are the (dis)advantages of using the style?

⚫ What are the style’s specializations?

31

Software Architecture: Foundations, Theory, and Practice

Some Common Styles

⚫ Traditional, language-influenced
styles

Main program and
subroutines

Object-oriented

⚫ Layered

Virtual machines

Client-server

⚫ Data-flow styles

Batch sequential

Pipe and filter

⚫ Shared memory

Blackboard

Rule based

⚫ Interpreter

Interpreter

Mobile code

⚫ Implicit invocation

Event-based

Publish-subscribe

⚫ Peer-to-peer

⚫ “Derived” styles

C2

CORBA

32

Software Architecture: Foundations, Theory, and Practice

Main Program and Subroutines LL

33

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Main Program and Subroutines LL
(cont’d)

⚫ The main program displays greetings and instructions,
then enters a loop and calls the three subroutines in turn

⚫ The first component obtains the pilot’s throttle-setting
input

⚫ The second component serves as the environment
simulator, determining how much fuel is left and what
the altitude and descent rate are

The only flight control law here is the translation of a
pilot-specified throttle percentage into the burn rate
to control the descent engine

⚫ The third component displays the updated state

⚫ There is no clock, one cycle is a clock tick
34

Software Architecture: Foundations, Theory, and Practice

Object-Oriented Style

⚫ Components are objects

Data and associated operations

⚫ Connectors are messages and method invocations

⚫ Style invariants

Objects are responsible for their internal representation
integrity

Internal representation is hidden from other objects

⚫ Advantages

“Infinite malleability” of object internals

System decomposition into sets of interacting agents

⚫ Disadvantages

Objects must know identities of servers

Side effects in object method invocations 35

Software Architecture: Foundations, Theory, and Practice

Object-Oriented LL

36

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

OO/LL in UML

37

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Object-Oriented LL (cont’d)

⚫ Here we have three encapsulations:

Spacecraft

User interface

Environment (a physics model that allows calculation
of the descent rate)

⚫ In contrast to the MPS model before, a single object
handles all (input and output) interactions with the user

The functional decomposition in the MPS model
resulted in those interactions be performed by
separate subroutines

38

Software Architecture: Foundations, Theory, and Practice

Layered Style

⚫ Hierarchical system organization

“Multi-level client-server”

Each layer exposes an interface (API) to be used by
above layers

⚫ Each layer acts as a

Server: service provider to layers “above”

Client: service consumer of layer(s) “below”

⚫ Connectors are protocols of layer interaction

⚫ Virtual machine style results from fully opaque layers

39

Software Architecture: Foundations, Theory, and Practice

Layered Style (cont’d)

⚫ Advantages

Increasing abstraction levels

Evolvability

Changes in a layer affect at most the adjacent two
layers

⚫ Reuse

Different implementations of layer are allowed as long
as interface is preserved

Standardized layer interfaces for libraries and
frameworks

40

Software Architecture: Foundations, Theory, and Practice

Layered Style (cont’d)

⚫ Disadvantages

Not universally applicable

Performance

⚫ Layers may have to be skipped

Determining the correct abstraction level

41

Software Architecture: Foundations, Theory, and Practice

Layered Systems/Virtual Machines

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Virtual Machines

⚫ In the previous figure, program A in layer 1 can access
the services offered by layer 2; but it does not need to
know that these services may in fact be implemented by
programs B and C

⚫ At the same time, programs in one layer can access only
those services provided by the layer immediately below
their layer

So, A cannot access the services provided by layer 3

⚫ Operating systems is a typical example of a layered style

Layer 1 has user applications

Layer 2 has directory and file management services

Layer 3 has device drivers
43

Software Architecture: Foundations, Theory, and Practice

Layered / Virtual
Machine LL

44

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Layered / Virtual Machine LL
(cont’d)

⚫ The top layer handles input received from the user
through the keyboard and calls the second layer to
service those inputs

⚫ The second layer includes the game logic and the
environment simulator; it updates the game state (based
on the user’s input from the top layer) and calls the third
layer to begin the process of displaying the updated
game state to the user

⚫ The third layer is a generic, two-dimensional game
engine, that supports a wide variety of similar games

⚫ The fourth level is the OS that supports platform specific
UI, such as window management 45

Software Architecture: Foundations, Theory, and Practice

Client-Server Style

⚫ Effectively, a two-layer virtual machine with network
connections

⚫ The server is the virtual machine below the clients

⚫ Components are clients and servers

⚫ Servers do not know number or identities of clients

⚫ Clients know server’s identity

⚫ Clients are mutually independent

⚫ Clients can be “thin” or “thick”, reflecting whether they
include any significant processing beyond UI functions

⚫ Connectors are RPC-based network interaction protocols,
used by the clients to access the server 46

Software Architecture: Foundations, Theory, and Practice

Client-Server LL

47

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Client-Server LL (cont’d)

⚫ In the shown system, three players simultaneously and
independently play the game

⚫ All game state, game logic, and environment simulation
is performed on the server

⚫ The clients perform the user interface functions

⚫ The connectors are RPC with a ”distributor” which
identifies network interaction paths and routes
communication along those paths

48

Software Architecture: Foundations, Theory, and Practice

Data-Flow Styles

⚫ Batch Sequential

Separate programs are executed in order; data is
passed as an aggregate from one program to the
next

Connectors: “The human hand” carrying tapes
between the programs

Data Elements: Explicit, aggregate elements passed
from one component to the next upon completion of
the producing program’s execution

⚫ One of the oldest styles, when the limitations of
computing equipment required the use of magnetic
tapes 49

Software Architecture: Foundations, Theory, and Practice

Batch-Sequential: A Financial
Application

50

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

A master tape holding a bank’s accounts is updated with
the day’s transactions held in a daily transactions tape

Software Architecture: Foundations, Theory, and Practice

Batch-Sequential LL

51

• Each functional processing step is done by a separate program
• An updated version of the game is then handed off to the next

program
• After the final step of displaying the game state is performed, the

produced tape is carried back to the first program
• Not a highly interactive, real-time game!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter Style

⚫ Components are filters

Transform input data streams into output data streams

Possibly incremental production of output

⚫ Connectors are pipes

Conduits for data streams

⚫ Style invariants

Filters are independent (no shared state)

Filter has no knowledge of up- or down-stream filters

⚫ Examples

UNIX shell signal processing

Distributed systems parallel programming

⚫ Example: ls invoices | grep -e August | sort
52

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter (cont’d)

⚫ Variations

Pipelines — linear sequences of filters

Bounded pipes — limited amount of data on a pipe

Typed pipes — data strongly typed

⚫ Advantages

System behavior is a succession of component behaviors

Filter addition, replacement, and reuse

⚫ Possible to hook any two filters together

Certain analyses

⚫ Throughput, latency, deadlock

Concurrent execution
53

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter (cont’d)

⚫ Disadvantages

Batch organization of processing

Interactive applications

Lowest common denominator on data transmission

54

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter LL

55

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter LL (cont’d)

⚫ GetBurnRate runs continuously on its own, prompting

the user for a new burn rate

When a value is generated, it is sent off through the
stream connector to the second filter

⚫ The second filter also loops continuously on its own,
updating time, serving as the environment simulator and
calculating the descent rate of the spacecraft

⚫ The third filter likewise loops, updating the display

⚫ In this design the “compute new values” determines how
much time has passed; could alternatively do that in the
GetBurnRate filter, which would change semantics a

bit 56

Software Architecture: Foundations, Theory, and Practice

Shared Memory Styles

⚫ The essence of shared memory (or shared state) styles
is that multiple components have access to the same
data store and communicate via that data store

⚫ This corresponds to the (bad!) practice of using global
data in procedural languages

⚫ However, in the case of shared state styles, the center
of the design attention is on these structured shared
repositories, which are well-ordered and carefully
managed

57

Software Architecture: Foundations, Theory, and Practice

Blackboard Style

⚫ Two kinds of components

Central data structure — blackboard

Components operating on the blackboard

⚫ System control is entirely driven by the blackboard state

⚫ Examples

Typically used for AI systems

Integrated software environments (e.g., Interlisp)

Compiler architecture

58

Software Architecture: Foundations, Theory, and Practice

Blackboard LL

59

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Blackboard LL (cont’d)

⚫ A single connector (Data Access) regulates access

from the various components in manipulating the
information on the blackboard

⚫ The blackboard maintains the game state

⚫ The first component updates the descent engine burn
rate based on user input

⚫ The second component displays to the user the current
state of the spacecraft and any other aspect of the game
state

⚫ The third component updates the game state based
upon a time and physics model

60

Software Architecture: Foundations, Theory, and Practice

Rule-Based / Expert System Style

⚫ Inference engine parses user input and determines
whether it is a fact/rule or a query

If it is a fact/rule, it adds this entry to the knowledge
base

Otherwise, it queries the knowledge base for
applicable rules and attempts to resolve the query

61

Software Architecture: Foundations, Theory, and Practice

Rule-Based / Expert System Style
(cont’d)

⚫ Components: User interface, inference engine,
knowledge base

⚫ Connectors: Components are tightly interconnected, with
direct procedure calls and/or shared memory

⚫ Data Elements: Facts and queries

⚫ Behavior of the application can be very easily modified
through addition or deletion of rules from the knowledge
base

⚫ Caution: When a large number of rules are involved,
understanding the interactions between multiple rules
affected by the same facts can become very difficult

62

Software Architecture: Foundations, Theory, and Practice

Rule-Based LL

63

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• In this style, we maintain a
set of consistent facts about
the spacecraft

• The user enters the value of
burn rate as a fact:
• burnrate(25)

• To see what the status of the
spacecraft is, the user
switches to the goal mode
and asks:
• landed(spacecraft)

• The inference engine
queries the database and
returns true or false

Software Architecture: Foundations, Theory, and Practice

Interpreter Style

⚫ Interpreter parses and executes input commands,
updating the state maintained by the interpreter

⚫ Components: Command interpreter, program/interpreter
state, user interface

⚫ Connectors: Typically, very closely bound with direct
procedure calls and shared state

⚫ Highly dynamic behavior possible, where the set of
commands is dynamically modified

System architecture may remain constant while new
capabilities are created based upon existing primitives

⚫ Superb for end-user programmability; supports
dynamically changing set of capabilities

⚫ Used in the programming languages Lisp and Scheme
64

Software Architecture: Foundations, Theory, and Practice

Interpreter LL

65

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• For each command entered, the
interpreter engine processes the
code and updates the interpreter
state as necessary

• The commands are specific
directives on how the spacecraft
should be manipulated

• The interpreter may return values
to the user, depending on the
command

• Each time the user enters a
BurnRate command, the time is

incremented
• When the user enters a

CheckStatus command, the user

receives info about altitude, fuel,
etc.

Software Architecture: Foundations, Theory, and Practice

Mobile-Code Style

⚫ It enables code to be transmitted to a remote host for
interpretation

⚫ This may be due to a lack of local computing power or
resources, or due to large data sets remotely located

⚫ Mobile code can be classified as:

Code on demand, when the initiator has resources
and state but downloads code from another site to be
executed locally

Remote evaluation, when the initiator has the code
but lacks the resources to execute the code

Mobile agent, when the initiator has the code and the
state but resources are located elsewhere

66

Software Architecture: Foundations, Theory, and Practice

Mobile Code LL

67

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Mobile Code LL (cont’d)

⚫ One client Web browser downloads code-on-demand in
the form of a LL game applet via HTTP

⚫ A second browser loads a JavaScript LL

⚫ A third browser uses some other form that is not
detailed

⚫ All the game logic moves to the client machines, freeing
the server’s computing resources

⚫ Each client machine maintains the game state
independently of the other clients

68

Software Architecture: Foundations, Theory, and Practice

Implicit Invocation Style

⚫ Unlike the previously discussed styles, the implicit invocation
styles are characterized by calls that are invoked indirectly
and implicitly, as a response to a notification or an event

⚫ This leads to ease of adaptation and enhanced scalability
between very loosely coupled components

69

Software Architecture: Foundations, Theory, and Practice

Publish-Subscribe

⚫ The publisher periodically creates information and the
subscriber obtains a copy of this information or at least
is informed of its availability

⚫ In a simple publish-subscribe style, the publisher
maintains a list of subscribers

A procedure call is issued to the subscribers when
new information is available

A subscriber may register his interest with a publisher
by providing a procedure interface to be used by the
latter (a “call-back”)

70

Software Architecture: Foundations, Theory, and Practice

Publish-Subscribe (cont’d)

⚫ For large-scale, network-based applications,
subscriptions involve the use of network protocols and
intermediate proxies and caches (in the same way that
physical newspapers are distributed by carriers and not
by a direct communication between the newspaper
company and the readers)

⚫ A typical example of this style is an online job posting
service

Hiring managers post or publish job openings

Job seekers subscribe to receive notifications of new
job postings

71

Software Architecture: Foundations, Theory, and Practice

Publish-Subscribe LL

72

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Publish-Subscribe LL (cont’d)

⚫ The LL software is deployed to various network hosts

⚫ Players (subscribers) register their hosts to a game
server

The game server publishes information, such as a
new Lunar terrain data, new spacecraft, and the
locations of all the registered spacecraft playing

⚫ Once registered, the players receive notifications for the
information they have registered

The notification may contain the information
(appropriate for a multi-player), or

A separate download link is provided for the
information (e.g., for game updates) 73

Software Architecture: Foundations, Theory, and Practice

Event-Based Style

⚫ Independent components communicate solely by
sending events through event-bus connectors

⚫ Components may react in response to receipt of an
event or may ignore it

⚫ For efficiency, events are not distributed to all
components but only to those that have expressed an
interest in them

With this optimization the style becomes similar to
publish-subscribe; however, in the the event-based
style there is no distinction between publishers and
subscribers and all components can both emit and
receive events

74

Software Architecture: Foundations, Theory, and Practice

Event-based LL

75

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Event-based LL (cont’d)

⚫ The clock component drives the game; every fraction of
the second, it sends out a tick notification

⚫ The spacecraft component, upon receiving a predefined
number of notifications from the clock, recalculates the
altitude, fuel level and velocity, and emits those values to
the event bus

⚫ The GUI component receives the events from the
spacecraft component and updates the display; it also
receives user settings which it emits to the event bus for
the spacecraft component to receive them and update its
internal state

⚫ The game logic component, based on the events it
receives from the spacecraft and the clock components,
decides if the game is over

76

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer Style

⚫ It consists of a network of loosely coupled
autonomous peers, each peer acting both as a client
and a server

⚫ Peers communicate using a network protocol, such as
in the Napster and Gnutella file sharing applications

⚫ Both information and control is fully decentralized

⚫ For a peer to find another peer, it sends the requests
to the peers it is connected with and these in return
propagate it to other peers

⚫ For efficiency, often some peers play special roles,
either for locating other peers or for providing
directories locating information 77

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer LL

78

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer LL (cont’d)

⚫ A group of Lunar Lander spacecraft are on their way to land in
different parts of the moon

⚫ LL1 wants to find out if another spacecraft has already landed at

the landing spot it has chosen, and does the following to obtain this
information:

It queries for available spacecraft within communication range

Only LL2 responds but it doesn’t have the information, so it
passes the request to LL3

LL3 doesn’t also have the information, so it passes the request
to LL4, LL6 and LL7

LL7 responds to LL3 that it has the information, sends it, and
then LL3 passes it on to LL1

⚫ At a later time (Tn), LL7 comes within communication range and
LL1 can communicate directly with it 79

Software Architecture: Foundations, Theory, and Practice

Heterogeneous Styles

⚫ More complex styles created through composition of
simpler styles

⚫ REST (from the first lecture)

⚫ C2

Implicit invocation + Layering + other constraints

⚫ Distributed objects

OO + client-server network style

CORBA

80

Software Architecture: Foundations, Theory, and Practice

C2 Style

⚫ An indirect invocation style in which independent
components communicate exclusively through
message routing connectors

⚫ Strict rules on connections between components and
connectors induce layering

⚫ Grew out of a desire to obtain the benefits of the
MVC pattern in a distributed heterogeneous platform
setting

⚫ The intention was for C2 to be used for GUI
applications but it found applicability in a much wider
variety of applications

81

Software Architecture: Foundations, Theory, and Practice

C2 Benefits

⚫ Substrate independence

Ease in modifying the application to work with
new platforms

⚫ Accommodating heterogeneity

Components can be written in different languages
and run on multiple, varying hardware platforms,
communicating across a network

⚫ Support for product lines

Ease of substituting one component with another
to achieve similar but different applications

82

Software Architecture: Foundations, Theory, and Practice

C2 Benefits (cont’d)

⚫ Ability to design in the MVC style

But with very strong separation between the
model and the UI elements

⚫ Natural support for concurrent components

Whether running on a shared processor or
multiple machines

⚫ Support for network-distributed applications

Communication protocol details are kept out of the
components and confined to connectors

83

Software Architecture: Foundations, Theory, and Practice

C2 Constraints

⚫ Topology

Layers of components and connectors, with a
defined “top” and “bottom”, wherein notifications
flow downwards and requests upwards

The top of a component may be connected to the
bottom of a single connector and the bottom of a
component may be connected to the top of a
single connector

⚫ Message-based communication

All communication between components is
achieved through exchanging messages, which
are classified either as requests (for services) or
notifications

84

Software Architecture: Foundations, Theory, and Practice

C2 Constraints (cont’d)

⚫ Message flow and substrate independence

Requests may only flow upwards and notifications
may only flow downwards in an architecture;
“substrate independence” means that a
component can only be aware of components
above it and is completely unaware of
components below it

⚫ Interfaces

Each component has a top and bottom domain;
the top domain specifies the set of notifications to
which a component may react and the bottom
domain specifies the set of notifications that this
component emits 85

Software Architecture: Foundations, Theory, and Practice

C2 LL

86

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

C2 LL (cont’d)

⚫ With respect to the use of events, the C2 architecture
operates largely like the event-based style one

⚫ Here, however, both the spacecraft and clock
components are guaranteed by the architecture to be
completely unaware of the presence of the game logic
and GUI components

87

Software Architecture: Foundations, Theory, and Practice

KLAX

88

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

KLAX(cont’d)

⚫ Colored tiles fall from the chutes at the top of the user’s
screen

⚫ A palette is used to move horizontally across the screen;
it can catch the tiles as they fall from the chutes

⚫ By inverting the palette, the tiles can be dropped into
the wells below

⚫ Matching three or more tiles of the same color,
horizontally, vertically, or diagonally across the wells,
points are scored and the tiles are removed

⚫ Lives are lost if the tiles are not caught by the palette or
the wells overflow

89

Software Architecture: Foundations, Theory, and Practice

KLAX in
C2

90

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

KLAX in C2(cont’d)

⚫ Components are divided into three logical groups

At the top are the components that encapsulate the
game’s state and the clock; they are placed there
because the game state is vital for the functioning of
the other two groups of components

At the next level are the game logic components;
they request changes of game state and interpret
game state change notifications

Then are the artist components, which receive
notifications for game state change and accordingly
update their depictions

91

Software Architecture: Foundations, Theory, and Practice

KLAX in C2(cont’d)

⚫ The benefits of the C2 architecture are:

Easy creation of related but different games; by
substituting three components, namely TileArtist,
TileMatchingLogic and NextTileLogic with
similar ones dealing with letters instead of tiles, the
game becomes one where letters fall down the chutes
and the game logic is based upon spelling words in
the wells

Other additions or substitutions of components result
in network-based multiplier games

Also, the application can run over network boundaries
and take advantage of concurrency

92

Software Architecture: Foundations, Theory, and Practice

Distributed Objects

⚫ The simple object-oriented style is augmented with the
client-server style to provide the notion of distributed
objects

⚫ Objects are instantiated on different hosts, each of
which exposes a public interface

⚫ The objects can be anything, from data structures to
million-line legacy systems

⚫ The interfaces are special in that all the parameters and
return values must be serializable so they can go over
the network

⚫ The default mode of interaction between objects is
synchronous procedure call, although asynchronous
extensions are found, such as CORBA 93

Software Architecture: Foundations, Theory, and Practice

CORBA

⚫ A standard for implementing middleware that supports
applications composed of distributed objects

⚫ An application is broken up into objects, which are
effectively software components that expose one or
more provided interfaces

⚫ The interfaces are specified in IDL (Interface Definition
Language), a notation which is independent of any
particular programming language or platform

⚫ IDL closely resembles the way class interfaces are
specified in an object-oriented programming language

⚫ All access to an object occurs through calls to one of its
IDL-specified interfaces, which are strongly typed (calls
and parameters are type-checked at compile time) 94

Software Architecture: Foundations, Theory, and Practice

CORBA (cont’d)

⚫ An IDL description of the interface for the data store
component of a LL system might look like this:

interface IDataStore

double getAltitude()

void setAltitude(in double newAltitude);

double getBurRate();

void setBurnRate(in double newBurnRate);

void getStatus(out double altitude,

out double burnRate,

out double velocity,

out double fuel,

out double time);

95

Software Architecture: Foundations, Theory, and Practice

CORBA Concept and
Implementation

96

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CORBA Concept and
Implementation (cont’d)

⚫ The top portion shows the conceptual or logical view

A client program obtains a pointer to an object
(ObjectInstance) that can perform a service for it

After obtaining this pointer, it makes calls to the
object instance through one of its interface methods

⚫ The bottom portion shows the implementation in a
distributed environment

The system generates an object stub and an object
skeleton, the former located at the machine of the
client and the latter at the machine of the object

The client communicates with the object by calling
the stub, which in turn calls the skeleton via the ORB

97

Software Architecture: Foundations, Theory, and Practice

CORBA LL

98

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CORBA LL (cont’d)

⚫ In this CORBA-based version, two independent user
clients, Trainer and Trainee, can view the state of

the Lander and can adjust the fuel consumption

⚫ In addition, a third client, Houston, monitors the state

of the Lander and the two pilots

⚫ The state of the Lander is maintained on a remote
server, the Lander Simulation System

⚫ The clients manipulate the burn rate by making calls
through the CORBA services

⚫ Each pilot client also maintains the state of its pilot

⚫ Houston can monitor both the state of the Lander as
well as the states of the pilots 99

Software Architecture: Foundations, Theory, and Practice

Observations about Styles

⚫ Different styles result in

Different architectures

Architectures with greatly differing properties

⚫ A style does not fully determine resulting architecture

A single style can result in different architectures

Considerable room for

⚫ Individual judgment

⚫ Variations among architects

⚫ A style defines domain of discourse

About problem (domain)

About resulting system

100

Software Architecture: Foundations, Theory, and Practice

Style Summary (1/4)

101

Style
Category &
Name

Summary Use It When Avoid It When

Language-influenced styles

Main Program
and
Subroutines

Main program controls
program execution, calling
multiple subroutines.

Application is small and simple. Complex data structures needed.
Future modifications likely.

Object-oriented Objects encapsulate state
and accessing functions

Close mapping between external
entities and internal objects is
sensible.
Many complex and interrelated
data structures.

Application is distributed in a
heterogeneous network.
Strong independence between
components necessary.
High performance required.

Layered

Virtual
Machines

Virtual machine, or a
layer, offers services to
layers above it

Many applications can be based
upon a single, common layer of
services.
Interface service specification
resilient when implementation of
a layer must change.

Many levels are required (causes
inefficiency).
Data structures must be accessed
from multiple layers.

Client-server Clients request service
from a server

Centralization of computation
and data at a single location (the
server) promotes manageability
and scalability; end-user
processing limited to data entry
and presentation.

Centrality presents a single-point-
of-failure risk; Network bandwidth
limited; Client machine capabilities
rival or exceed the server’s.

Software Architecture: Foundations, Theory, and Practice

Style Summary, continued (2/4)

102

Data-flow styles

Batch

sequential

Separate programs

executed sequentially,
with batched input

Problem easil y formulated as a

set of sequential, severable
steps.

Interactivity or concurrency

between components necessary
or desirable.
Random-access to data required.

Pipe-and-filter Separate programs, a.k.a.
filters, executed,
potentially concurrently.
Pipes route data streams
between filters

[As with batch-sequential] Filters
are useful in more than one
application. Data structures
easil y serializable.

Interaction between components
required. Exchange of complex
data structures between
components required.

Shared memory

Blackboard Independent programs,
access and communicate
exclusively through a
global repository known
as blackboard

All calculation centers on a
common, changing data
structure;
Order of processing dynamically
determined and data-driven.

Programs deal with independent
parts of the common data.
Interface to common data
susceptible to change. When
interactions between the

independent programs require
complex regulation.

Rule-based Use facts or rules entered
into the knowledge base
to resolve a query

Problem data and queries
expressible as simple rules over
which inference may be

performed.

Number of rules is large.
Interaction between rules present.
High-performance required.

Software Architecture: Foundations, Theory, and Practice

Style Summary, continued (3/4)

103

Interpreter

Interpreter Interpreter parses and

executes the input stream,
updating the state
maintained by the
interpreter

Highly dynamic behavior

required. High degree of end-
user customizability.

High performance required.

Mobile Code Code is mobile, that is, it
is executed in a remote
host

When it is more efficient to move
processing to a data set than the
data set to processing.
When it is desirous to
dynamically customize a local
processing node through
inclusion of external code

Security of mobile code cannot be
assured, or sandboxed.
When tight control of versions of
deployed software is required.

Software Architecture: Foundations, Theory, and Practice

Style Summary, continued (4/4)

104

Implicit Invocation

Publish-

subscribe

Publishers broadcast

messages to subscribers

Components are very loosely

coupled. Subscription data is
small and efficiently transported.

When middleware to support high-

volume data is unavailable.

Event-based Independent components

asynchronously emit and
receive events
communicated over event
buses

Components are concurrent and

independent.
Components heterogeneous and
network-distributed.

Guarantees on real-time

processing of events is required.

Peer-to-peer Peers hold state and
behavior and can act as

both clients and servers

Peers are distributed in a
network, can be heterogeneous,

and mutually independent.
Robust in face of independent
failures.
Highly scalable.

Trustworthiness of independent
peers cannot be assured or

managed.
Resource discovery inefficient
without designated nodes.

More complex styles

C2 Layered network of
concurrent components
communicating by events

When independence from
substrate technologies required.
Heterogeneous applications.
When support for product-lines
desired.

When high-performance across
many layers required.
When multiple threads are
inefficient.

Distributed
Objects

Objects instantiated on
different hosts

Objective is to preserve illusion
of location-transparency

When high overhead of supporting
middleware is excessive. When

network properties are
unmaskable, in practical terms.

Software Architecture: Foundations, Theory, and Practice

Design Recovery

⚫ What happens if a system is already implemented but
has no recorded architecture?

⚫ The task of design recovery is

Examining the existing code base

Determining what the system’s components,
connectors, and overall topology are

⚫ A common approach to architectural recovery is
clustering of the implementation-level entities into
architectural elements

Syntactic clustering

Semantic clustering

105

Software Architecture: Foundations, Theory, and Practice

Syntactic Clustering

⚫ Focuses exclusively on the static relationships among
code-level entities

⚫ Can be performed without executing the system

⚫ Embodies inter-component (a.k.a. coupling) and intra-
component (a.k.a. cohesion) connectivity

⚫ May ignore or misinterpret many subtle relationships,
because dynamic information is missing

106

Software Architecture: Foundations, Theory, and Practice

Semantic Clustering

⚫ Includes all aspects of a system’s domain knowledge and
information about the behavioral similarity of its entities

⚫ Requires interpreting the system entities’ meaning, and
possibly executing the system on a representative set of
inputs

⚫ Difficult to automate

⚫ May also be difficult to avail oneself of it

107

Software Architecture: Foundations, Theory, and Practice

When There’s No Experience to Go
On…

⚫ The first effort a designer should make in addressing a
novel design challenge is to attempt to determine that it
is genuinely a novel problem

⚫ Basic Strategy

Divergence – shake off inadequate prior approaches
and discover or admit a variety of new ideas

Transformation – combination of analysis and
selection; based upon the information from the
divergence step, solution possibilities and new
understandings of the problem are examined

Convergence – selecting and further refining ideas

⚫ Repeatedly cycling through the basic steps until a
feasible solution emerges 108

Software Architecture: Foundations, Theory, and Practice

Analogy Searching

⚫ Examine other fields and disciplines unrelated to the
target problem for approaches and ideas that are
analogous to the problem

⚫ Formulate a solution strategy based upon that analogy

⚫ A common “unrelated domain” that has yielded a variety
of solutions is nature, especially the biological sciences

E.g., Neural Networks

109

Software Architecture: Foundations, Theory, and Practice

Brainstorming

⚫ Technique of rapidly generating a wide set of ideas and
thoughts pertaining to a design problem

Without (initially) devoting effort to assessing the
feasibility

⚫ Brainstorming can be done by an individual or, more
commonly, by a group

⚫ Problem: A brainstorming session can generate a large
number of ideas… all of which might be low-quality

⚫ The chief value of brainstorming is in identifying categories of
possible designs, not any specific design solution suggested
during a session

⚫ After brainstorm, the design process may proceed to the
Transformation and Convergence steps

110

Software Architecture: Foundations, Theory, and Practice

“Literature” Searching

⚫ Examining published information to identify material that
can be used to guide or inspire designers

⚫ Many historically useful ways of searching “literature”
are available

⚫ Digital library collections make searching extraordinarily
faster and more effective

IEEE Xplore

ACM Digital Library

Google Scholar

⚫ The availability of free and open-source software adds
special value to this technique

111

Software Architecture: Foundations, Theory, and Practice

Morphological Charts

⚫ The essential idea:

Identify all the primary functions to be performed by the
desired system

For each function identify a means of performing that
function

Attempt to choose one means for each function such that
the collection of means performs all the required functions
in a compatible manner

⚫ The technique does not demand that the functions be shown
to be independent when starting out

⚫ Sub-solutions to a given problem do not need to be
compatible with all the sub-solutions to other functions in the
beginning

112

Software Architecture: Foundations, Theory, and Practice

Removing Mental Blocks

⚫ If you can’t solve the problem, change the problem to
one you can solve

If the new problem is “close enough” to what is
needed, then closure is reached

If it is not close enough, the solution to the revised
problem may suggest new venues for attacking the
original

⚫ A variety of transformation strategies are available,
many of which can be seen and applied in software
architecture

⚫ Elements of a solution may be adapted, modified,
substituted, reordered or combined 113

Software Architecture: Foundations, Theory, and Practice

Controlling the Design Strategy

⚫ The potentially chaotic nature of exploring diverse
approaches to the problem demands that some care be
used in managing the activity

Identify and review critical decisions to assess the
consequences of choices regarding these issues

Relate the costs of research and design to the penalty
for taking wrong decisions; the penalty for not
knowing must exceed the cost of finding out

Insulate uncertain decisions, where the design is
unsure, or the related circumstances may change

Continually re-evaluate system “requirements” in light
of what the design exploration yields 114

Software Architecture: Foundations, Theory, and Practice

Putting it all Together

⚫ The concepts and techniques for use in the design of
software architectures have ranged from very basic ones
(e.g., abstraction and separation of concerns) to
extensive treatment of architectures, styles and patterns

⚫ System architects must choose a feasible set of concepts
on which they will build a satisfactory architecture

⚫ The hardest part is to know whether to attempt to base
the new design on some existing design or to start
designing from scratch

⚫ Significant insights can come from iteratively working
with requirements but also from examining
implementations 115

Software Architecture: Foundations, Theory, and Practice

Insights from Requirements

⚫ In many cases new architectures can be created based
upon experience with and improvement to pre-existing
architectures

⚫ Architectures provide:

A vocabulary of basic concepts, means, approaches
and possibilities

A framework to describe properties

A basis for analysis through knowledge of previous
design decisions and related consequences

116

Software Architecture: Foundations, Theory, and Practice

Insights from Requirements
(cont’d)

⚫ Experience in dealing with past design and new
requirements can:

Show what the most critical issues are or what the
most difficult problems are likely to be

Suggest what the key levels of discourse are and
what vocabulary to use

Show successful patterns of product specialization

Suggest those architectural patterns and styles that
have been effective in a specific domain

Show areas in which novel development is required

117

Software Architecture: Foundations, Theory, and Practice

Insights from Implementation

⚫ Constraints on the implementation activity may help
shape the design

⚫ Externally motivated constraints might dictate

Use of a middleware

Use of a particular programming language

Software reuse

⚫ Design and implementation may proceed cooperatively
and contemporaneously

Initial partial implementation activities may yield
critical performance or feasibility information

118

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Designing an architecture well is a skill to be learned and
practiced

⚫ The most effective approaches to design will be those
that have been refined and seasoned within the domain
of the new application

⚫ In this chapter we introduced all the major conceptual
elements of architecture-centric software engineering

⚫ What remains is placing techniques and tools in the
designer’s hands to enable productive exploitation of
these conceptual elements

119

