
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Basic Concepts

Software Architecture

Chapter 3

Software Architecture: Foundations, Theory, and Practice

What is Software Architecture?

⚫ Definition

A software system’s architecture is the set of
principal design decisions about the system

⚫ Software architecture is the blueprint for a software
system’s construction and evolution

⚫ Design decisions encompass every facet of the
system under development

Structure

Behavior

Interaction

Non-functional properties

Implementation
2

Software Architecture: Foundations, Theory, and Practice

What is Software Architecture?
(cont’d)
⚫ Structure

“The architectural elements should be organized and
composed exactly like this …”

⚫ Behavior

“Data processing, storage and visualization will be
performed in strict sequence.”

⚫ Interaction

“Communication among all system elements will occur only
using event notifications.”

⚫ Nonfunctional properties

“The system’s dependability will be ensured by replicated
processing modules”

⚫ Implementation

“UI will be built with Java Swing.” 3

Software Architecture: Foundations, Theory, and Practice

What is “Principal”?

⚫ “Principal” implies a degree of importance and topicality
that grants a design decision “architectural status” (i.e.,
makes it an architectural design decision)

It implies that not all design decisions are
architectural

That is, they do not necessarily impact a system’s
architecture

⚫ How one defines “principal” will depend on what the
stakeholders define as the system goals

4

Software Architecture: Foundations, Theory, and Practice

Other Definitions of Software
Architecture

⚫ Perry and Wolf

Software Architecture = { Elements, Form, Rationale }

what how why

⚫ Shaw and Garlan

Software architecture [is a level of design that] involves

⚫ the description of elements from which systems are built

⚫ interactions among those elements

⚫ patterns that guide their composition, and

⚫ constraints on these patterns

⚫ Kruchten

Software architecture deals with the design and
implementation of the high-level structure of software

Architecture deals with abstraction, decomposition,
composition, style, and aesthetics

5

Software Architecture: Foundations, Theory, and Practice

Temporal Aspect

⚫ Design decisions are and unmade over a system’s
lifetime

→ Architecture has a temporal aspect

⚫ At any given point in time the system has only one
architecture

⚫ A system’s architecture will change over time

6

Software Architecture: Foundations, Theory, and Practice

Prescriptive vs. Descriptive
Architecture

⚫ At any time t, during the process of engineering a
software system, a system’s prescriptive architecture
captures the set of design decisions P made prior to the
system’s construction, that reflect the intent

It is the as-conceived or as-intended architecture

It need not necessarily exist in a tangible form

⚫ It may be entirely in the architect’s mind

⚫ Alternatively, it may have been captured in a more
concrete or formal notation (e.g., using an ADL as
we will see later on) or in some form of
documentation 7

Software Architecture: Foundations, Theory, and Practice

Prescriptive vs. Descriptive
Architecture (cont’d)

⚫ In order to realize and refine the prescriptive
architecture, we select a set of artifacts A, that embody
a set of principal design decisions D

⚫ A system’s descriptive architecture describes how the
system has been built

It is the as-implemented or as-realized architecture

Effectively, it is the embodiment of D by A

⚫ At the beginning of a system’s inception, the set P will
have some initial architectural design decisions, but the
sets D and A may be empty

8

Software Architecture: Foundations, Theory, and Practice

An Example of a Prescriptive vs.
Descriptive Architecture

⚫ An application controls the routing of cargo from a set of
incoming Delivery Ports to a set of Warehouses
via a set of Vehicles

⚫ The Cargo Router component tries to optimize the

use of vehicles and deliver the cargo to the warehouses

⚫ The Clock component provides the time and helps the

ports, vehicles and warehouses to synchronize

⚫ The Graphics Binding component provides the GUI

for human operators to assess the system’s state

⚫ The above components interact via three connectors

Clock Conn, Router Conn, Graphics Conn 9

Software Architecture: Foundations, Theory, and Practice

As-Designed Architecture

10

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

As-Implemented Architecture

11

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Differences Between the Two
Architectures

⚫ The Vehicle component is not connected to the Clock
Conn connector

⚫ Also, the Router Conn and the Clock Conn

connectors are connected

This allows Clock to interact directly with Cargo
Router via the two connectors

⚫ Which architecture is correct?

⚫ Are the two architectures consistent with one another?

⚫ What criteria are used to establish the consistency
between the two architectures?

⚫ On what information is the answer to the preceding
questions based?

12

Software Architecture: Foundations, Theory, and Practice

Architectural Evolution

⚫ When a system evolves, ideally its prescriptive
architecture is modified first

⚫ In practice, the system – and thus its descriptive
architecture – is often directly modified

⚫ This happens because of

Developer sloppiness

Perception of short deadlines which prevent thinking
through and documenting

Lack of documented prescriptive architecture

Need or desire for code optimizations

Inadequate techniques or tool support
13

Software Architecture: Foundations, Theory, and Practice

Architectural Degradation

⚫ Two related concepts

Architectural drift

Architectural erosion

⚫ Architectural drift is introduction of principal design
decisions into a system’s descriptive architecture that

Are not included in, encompassed by, or implied
by the prescriptive architecture

But which do not violate any of the prescriptive
architecture’s design decisions

⚫ Architectural erosion is the introduction of
architectural design decisions into a system’s
descriptive architecture that violate its prescriptive
architecture

14

Software Architecture: Foundations, Theory, and Practice

Architectural Recovery

⚫ If architectural degradation is allowed to occur, one will be
forced to recover the system’s architecture sooner or later

⚫ Architectural recovery is the process of determining a
software system’s architecture from its implementation-level
artifacts

⚫ Implementation artifacts can be source code, executable files,
Java class files, etc.

⚫ The process of architectural recovery extracts a system’s
descriptive architecture

⚫ If complemented with a statement of the architect’s original
intent, in principle the system’s prescriptive architecture can
be recovered

⚫ Recovery is a very complex and time-consuming process 15

Software Architecture: Foundations, Theory, and Practice

Implementation-Level View of an
Application

16

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Implementation-Level View of an
Application

17

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Complex and virtually

incomprehensible!

Software Architecture: Foundations, Theory, and Practice

Architectural Perspectives

⚫ An architectural perspective is a nonempty set of
types of architectural design decisions

⚫ Its purpose is to direct attention to a subset of
decisions, say, for purposes of analysis

⚫ The figures on the cargo routing application provide
the structural perspective for this application

It says nothing about, for instance, its behavior,
interaction, rationale, and so on

⚫ Another example of perspective is deployment

18

Software Architecture: Foundations, Theory, and Practice

Deployment

⚫ A software system cannot fulfill its purpose until it is
deployed

Executable modules are physically placed on the
hardware devices on which they are supposed to
run

⚫ The deployment view of an architecture can be
critical in assessing whether the system will be able
to satisfy its requirements

⚫ Possible assessment dimensions

Available memory

Power consumption

Required network bandwidth

19

Software Architecture: Foundations, Theory, and Practice

A System’s Deployment Architectural
Perspective

20

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Software Architecture’s Elements

⚫ A software system’s architecture typically is not (and
should not be) a uniform monolith

⚫ A software system’s architecture should be a
composition and interplay of different elements

Processing

Data, also referred as information or state

Interaction

21

Software Architecture: Foundations, Theory, and Practice

Components

⚫ Elements that encapsulate processing and data in a
system’s architecture are referred to as software
components

⚫ Definition

A software component is an architectural entity that

⚫ Encapsulates a subset of the system’s functionality
and/or data

⚫ Restricts access to that subset via an explicitly
defined interface

⚫ Has explicitly defined dependencies on its required
execution context

⚫ Components typically provide application-specific services

22

Software Architecture: Foundations, Theory, and Practice

Execution Context that a
Component Assumes
⚫ This is a critical factor that makes components usable and

reusable across applications

⚫ The extent of the context captured by a component can
include:

The component’s required interface, that is the
interface to services provided by other components on
which this component’s operations depend upon

The availability of specific resources (e.g., data file) on
which this component relies

The required system software (e.g., run time
environment, OS, middleware, etc.)

The hardware configuration needed to execute the
component

23

Software Architecture: Foundations, Theory, and Practice

Connectors

⚫ In complex systems interaction may become more
important and challenging than the functionality of
the individual components

⚫ Definition

A software connector is an architectural building
block tasked with effecting and regulating
interactions among components

⚫ In many software systems connectors are usually
simple procedure calls or shared data accesses

Much more sophisticated and complex connectors
are possible!

⚫ Connectors typically provide application-independent
interaction facilities

24

Software Architecture: Foundations, Theory, and Practice

Examples of Connectors

⚫ Procedure call connectors, directly implemented in
programming languages, enabling synchronous
exchange of data and control between two components

⚫ Shared memory connectors, allowing multiple
components to interact for reading or writing

⚫ Message passing connectors

⚫ Streaming connectors

⚫ Distribution connectors, such as RPC

⚫ Wrapper/adaptor connectors, for establishing
communication between and integration of different
types of components (e.g., legacy systems)

25

Software Architecture: Foundations, Theory, and Practice

Components vs Connectors

⚫ Typically, components are often targeted at the
processing and data capture needs of a particular
application or classes of applications, i.e., they are
application-specific

E.g., Vehicle and Warehouse

Or a Web server

⚫ Connectors are application independent

They are built without a specific application or
category of applications in mind and they can be used
in all kinds of applications repeatedly

26

Software Architecture: Foundations, Theory, and Practice

Configurations

⚫ Components and connectors are composed in a specific
way in a given system’s architecture to accomplish that
system’s objective

⚫ Definition

An architectural configuration, or topology, is a set of
specific associations between the components and
connectors of a software system’s architecture

27

Software Architecture: Foundations, Theory, and Practice

An Example Configuration

Deployment

Strategies

Repository

Simulation

Agent

S
y
m

m
e

tr
ic

C_Data

Repository

C_Troops

Manager

C_Display

Manager

C_App

Manager

Deployment

Advisor

Strategy

Analyzer

Asymmetric

Asymmetric

Display

Manager

Asymmetric

Asymmetric

S_Troops

Manager

S_Display

Manager

Asymmetric

Asymmetric

Asymmetric

Offensive

Strategy

Defensive

Strategy

Decision

Module

Data

Repository

S
y
m

m
e

tr
ic

28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectural Styles

⚫ Certain design choices regularly result in solutions with superior
properties

Compared to other possible alternatives, solutions such as this
are more elegant, effective, efficient, dependable, evolvable,
scalable, and so on

⚫ Definition

An architectural style is a named collection of architectural
design decisions that

⚫ Are applicable in a given development context

⚫ Constrain architectural design decisions that are specific to a
particular system within that context

⚫ Elicit beneficial qualities in each resulting system

29

Software Architecture: Foundations, Theory, and Practice

Architectural Patterns

⚫ Definition

An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for
different software development contexts in which
that problem appears

⚫ A widely used pattern in modern distributed systems
is the three-tiered system pattern

Science

Banking

E-commerce

Reservation systems

30

Software Architecture: Foundations, Theory, and Practice

Three-Tiered Pattern

⚫ Front Tier

Contains the user interface functionality to access the
system’s services

⚫ Middle Tier

Contains the application’s major functionality

⚫ Back Tier

Contains the application’s data access and storage
functionality

31

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Differences Between Styles and
Patterns
⚫ Scope

An architectural style applies to a development
context

⚫ “Highly distributed systems” or “GUI-intensive”

An architectural pattern applies to a specific
design problem

⚫ “The system’s state must be presented in
multiple ways.”

Architectural styles are strategic while
architectural patterns are tactical design tools

32

Software Architecture: Foundations, Theory, and Practice

Differences Between Styles and
Patterns (cont’d)
⚫ Abstraction

By themselves, architectural styles are too
abstract to yield a concrete system design and
require human interpretation towards this purpose

Architectural patterns are parameterized
architectural fragments that can be thought of as
concrete pieces of a design

⚫ Relationship

A system designed according to the rules of a
single style may involve the use of multiple
patterns

Conversely, a single pattern could be applied to
systems designed according to guidelines of
multiple styles

33

Software Architecture: Foundations, Theory, and Practice

Architectural Models

⚫ Architecture Model

An artifact documenting some or all of the
architectural design decisions about a system

⚫ Architectural Modeling

The reification and documentation of those design
decisions

⚫ Architectural Modeling Notation

A language or means of capturing design notations

34

Software Architecture: Foundations, Theory, and Practice

Architectural Processes

⚫ Architectural design

⚫ Architecture modeling and visualization

⚫ Architecture-driven system analysis

⚫ Architecture-driven system implementation

⚫ Architecture-driven system deployment, runtime
redeployment, and mobility

⚫ Architecture-based design for non-functional properties,
including security and trust

⚫ Architectural adaptation

35

Software Architecture: Foundations, Theory, and Practice

Stakeholders in a System’s
Architecture

⚫ Architects

⚫ Developers

⚫ Testers

⚫ Managers

⚫ Customers

⚫ Users

⚫ Vendors

36

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Any mature engineering field must be accompanied by a
shared, precise understanding of its basic concepts,
commonly used models, and processes

⚫ The notions that underlie the field of software
architecture are itself the concept of architecture,
coupled with the notions of components and connectors,
configurations, architectural styles and patterns, models
and processes, and stakeholders

⚫ In the remainder of the semester, we will analyze in
depth these concepts

37

