
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectures 
in Context

Software Architecture
Chapter 2



Software Architecture: Foundations, Theory, and Practice

Fundamental Understanding

⚫ Architecture is a set of principal design decisions about a 
software system

⚫ Three fundamental understandings of software 
architecture

Every application has an architecture

Every application has at least one architect

Architecture is not a phase of development

2



Software Architecture: Foundations, Theory, and Practice

Every Application Has an 
Architecture

⚫ By architecture we mean the set of principal design 
decisions made about a system

⚫ The architecture of the WWW is based on the REST 
architectural style

⚫ The architecture of a Unix shell is based on the pipe-
and-filter style

⚫ All applications have (good or bad) architectures 
because they all result from key design decisions

Where did the architecture of an app come from?

How can this architecture be characterized?

What are its properties? Is it a “good” or ”bad” one?
3



Software Architecture: Foundations, Theory, and Practice

Every Application Has at Least One 
Architect

⚫ The architect is the person, or in most cases, group who

Makes the principal decisions about the application

Establishes and (it is hoped) maintains the 
foundational design

⚫ Were the architects always aware when they had made 
a fundamental design decision?

⚫ Can they maintain the conceptual integrity of the design 
over time?

⚫ Were alternatives considered at the various decision 
points?

4



Software Architecture: Foundations, Theory, and Practice

Architecture is not a Phase of 
Development

⚫ In a simplistic and inaccurate understanding, the 
architecture is a specific product of a particular phase in 
the development process, that is after requirements 
analysis and before the detailed design

⚫ Treating architecture as a phase denies its foundational 
role in software development and confines architectures 
to consist of only a few design decisions

⚫ More than “high-level design”, ”product design”, etc.

⚫ Architecture is also represented, e.g., by object code, 
source code, …

5



Software Architecture: Foundations, Theory, and Practice

Context of Software Architecture

⚫ Requirements

⚫ Design

⚫ Implementation

⚫ Analysis and Testing

⚫ Evolution

⚫ Development Process

6



Software Architecture: Foundations, Theory, and Practice

Requirements Analysis

⚫ Traditional SE suggests requirements analysis should 
remain unsullied by any consideration for a design

⚫ However, without reference to existing architectures it 
becomes difficult to assess practicality, schedules, or 
costs

In building architecture we talk about specific rooms…

…rather than the abstract concept “means for 
providing shelter”

⚫ In engineering new products come from the observation 
of existing solution and their limitations

7



Software Architecture: Foundations, Theory, and Practice

New Perspective on Requirements 
Analysis

⚫ Existing designs and architectures provide the solution 
vocabulary

⚫ Our understanding of what works now, and how it 
works, affects our wants and perceived needs

⚫ The insights from our experiences with existing systems 

Help us imagine what might work and 

Enable us to assess development time and costs

⚫ → Requirements analysis and consideration of design 
must be pursued at the same time

8



Software Architecture: Foundations, Theory, and Practice

Non-Functional Properties (NFPs)

⚫ NFPs are the result of architectural choices

⚫ NFP questions are raised as the result of architectural 
choices

⚫ Specification of NFP might require an architectural 
framework to even enable their statement

⚫ An architectural framework will be required for 
assessment of whether the properties are achievable

9



Software Architecture: Foundations, Theory, and Practice

Core Observations

⚫ Existing designs and architectures provide the 
vocabulary for talking about what might be

⚫ Our understanding of what works now, and how it 
works, affects our wants and perceived needs, typically 
in very solution-focused terms

⚫ The insights from our experiences with existing systems 
helps us imagine what might work and enables us to 
assess, at an early stage, how long we must be willing to 
wait for it, and how much we will need to pay for it

10



Software Architecture: Foundations, Theory, and Practice

Design and Architecture

⚫ The traditional design phase is not exclusively “the place or 
the time” when a system’s architecture is developed–for that 
happens over the course of development–but it is a time 
when particular emphasis is placed on architectural concerns

⚫ Since principal design decisions are made throughout 
development, designing must be seen as an aspect of many 
other development activities

⚫ Architectural decisions are of many different kinds, requiring a 
rich repertoire of design techniques

11



Software Architecture: Foundations, Theory, and Practice

Design and Architecture (cont’d)

⚫ Design is an activity that pervades software development 

⚫ It is an activity that creates part of a system’s architecture

⚫ Typically, in the traditional design phase, decisions concern 

A system’s structure

Identification of its primary components 

Their interconnections 

⚫ Architecture denotes the set of principal design decisions 
about a system

That is more than just structure

12



Software Architecture: Foundations, Theory, and Practice

Architecture-Centric Design

⚫ Traditional design phase suggests translating the 
requirements into algorithms, so a programmer can 
implement them

⚫ Architecture-centric design

Stakeholder issues (e.g., use of open-source s/w)

Decision about use of COTS component 

Overarching style and structure

Types of connectors for composing sub-elements

Package and primary class structure

Security and other non-functional properties

Deployment and post implementation issues 13



Software Architecture: Foundations, Theory, and Practice

Design Techniques

⚫ Basic conceptual tools

Separation of concerns

Abstraction

Modularity

⚫ Two illustrative widely adapted strategies

Object-oriented design

Domain-specific software architectures (DSSA)

14



Software Architecture: Foundations, Theory, and Practice

Object-Oriented Design (OOD)

⚫ Objects

Main abstraction entity in OOD

Encapsulations of state with functions for accessing 
and manipulating that state 

Numerous variations are found regarding the way 
objects are specified, related to one another, created, 
destroyed, etc.

15



Software Architecture: Foundations, Theory, and Practice

Pros and Cons of OOD

⚫ Pros

UML modeling notation (with simple notions of SA)

Design patterns that “codify” prior acquired know-how

⚫ Cons

Provides only

⚫ One level of encapsulation (the object)

⚫ One notion of interface

⚫ One type of explicit connector (procedure call)

◆ Even message passing is realized via procedure calls

⚫No real notion of structure

OO programming languages might dictate important 
design decisions

OOD assumes a shared address space 16



Software Architecture: Foundations, Theory, and Practice

Domain-Specific Software 
Architectures (DSSA)

⚫ Capturing and characterizing the best solutions and best 
practices from past projects within a domain 

⚫ Production of new applications can focus on the points 
of novel variation

⚫ Reuse applicable parts of the architecture and 
implementation

⚫ Good technical support is required: the architecture of 
the previous generation of apps must be captured and 
refined for reuse

⚫ Applicable for product lines

→Recall the Philips Koala example
17



Software Architecture: Foundations, Theory, and Practice

Implementation

⚫ The objective is to create machine-executable source 
code

That code should be faithful to the architecture 

⚫ Alternatively, it may adapt the architecture

⚫How much adaptation is allowed?

⚫ Architecturally-relevant vs. -unimportant 
adaptations

It must fully develop all outstanding details of the 
application 

18



Software Architecture: Foundations, Theory, and Practice

Faithful Implementation 

⚫ All of the structural elements found in the architecture 
are implemented in the source code

⚫ Source code must not utilize major new computational 
elements that have no corresponding elements in the 
architecture

⚫ Source code must not contain new connections between 
architectural elements that are not found in the 
architecture

⚫ Is this realistic?
Overly constraining? 
What if we deviate from this?

19



Software Architecture: Foundations, Theory, and Practice

Unfaithful Implementation 

⚫ The implementation does have an architecture

It is latent, as opposed to what is documented 

⚫ Failure to recognize the distinction between planned and 
implemented architecture

Robs one of the ability to reason about the 
application’s architecture in the future

Misleads all stakeholders regarding what they believe 
they have as opposed to what they really have

Makes any development or evolution strategy that is 
based on the documented (but inaccurate) 
architecture doomed to failure

20



Software Architecture: Foundations, Theory, and Practice

Implementation Strategies

⚫ Generative techniques

E.g., parser generators

⚫ Frameworks

Collections of source code with identified places 
where the engineer must “fill in the blanks”

⚫ Middleware

CORBA, DCOM, RPC, … 

⚫ Reuse-based techniques

COTS, open-source, in-house 

⚫ Writing all code manually
21



Software Architecture: Foundations, Theory, and Practice

How it all 
Fits 
Together

22

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Analysis and Testing

⚫ Analysis and testing are activities undertaken to assess 
the qualities of an artifact

⚫ Traditionally, this is done after the code has been written

⚫ The code is tested for functional correctness but 
occasionally also for NFPs (e.g., performance)

⚫ The earlier an error is detected and corrected the lower 
the aggregate cost 

⚫ Rigorous representations are required for analysis, so 
precise questions can be asked and answered

Preferably by means of automated analysis aids

23



Software Architecture: Foundations, Theory, and Practice

Analysis of Architectural Models

⚫ A formal architectural model can be examined for 
internal consistency and correctness

⚫ An analysis on a formal model can reveal

Component mismatch

Incomplete specifications

Undesired communication patterns

Deadlocks

Security flaws

⚫ It can be used for size and development time 
estimations

24



Software Architecture: Foundations, Theory, and Practice

Benefits of the Analysis of 
Architectural Models

⚫ The structural architecture of an application can be 
examined for consistency, correctness and exhibition of 
desired nonfunctional properties

⚫ The architectural model may be examined for 
consistency with requirements

⚫ The architectural model may be used in determining and 
supporting analysis and testing strategies applied to the 
source code

⚫ The architectural model can be compared to a model 
derived from the source code of an application

25



Software Architecture: Foundations, Theory, and Practice

Evolution and Maintenance

⚫ All activities that chronologically follow the release of an 
application

⚫ Software will evolve

Regardless of whether one is using an 
architecture-centric development process or not 

⚫ The traditional software engineering approach to maintenance 
is largely ad hoc 

Risk of architectural decay and overall quality degradation

⚫ Architecture-centric approach 

Sustained focus on an explicit, substantive, modifiable, 
faithful architectural model

26



Software Architecture: Foundations, Theory, and Practice

Architecture-Centric Evolution 
Process

⚫ Motivation (e.g., creating new versions of a product)

⚫ Evaluation or assessment: the proposed change, as well 
as the existing application, must be examined to 
determine, for example, whether the desired change can 
be achieved and, if so, how

If an explicit architectural model that is faithful to the 
implementation is available, this step becomes easier

⚫ Development of an approach by choosing among 
alternatives

⚫ Once an approach has chosen, it is put into action, 
maintaining consistency between the SA and the code

27



Software Architecture: Foundations, Theory, and Practice

Processes

⚫ Traditional software process discussions make the 
process activities the focal point 

⚫ In architecture-centric software engineering the product 
becomes the focal point 

⚫ No single “right” software process for architecture-
centric software engineering exists

⚫ Comparing, or even understanding, different strategies 
for software development, requires a means for 
describing these strategies

⚫ A good descriptive formalism will also give effective 
prominence to the central role of the product’s SA

28



Software Architecture: Foundations, Theory, and Practice

Turbine – A New Visualization 
Model

⚫ Goals of the visualization

Provide an intuitive sense of 

⚫ Project activities at any given time

◆ Including concurrency of types of development activities

⚫ The “information space” of the project

⚫ Effort (e.g., labor hours expended) at any given time

⚫ Product state, e.g., total content of product development

Show centrality of the products

⚫ (Hopefully) Growing body of artifacts

⚫ Allow for the centrality of architecture

◆ But work equally well for other approaches, 
including “dysfunctional” ones

Effective for indicating time, gaps, duration of activities

Investment (cost) indicators 29



Software Architecture: Foundations, Theory, and Practice

The Turbine Model

30

Waterfall example

Angled perspective

time

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

The Turbine Model

31

Coding

Design

Requirements

Testing

Simplistic Waterfall,

Side perspective

time
“Core” of project

artifacts

Radius of rotor indicates

level of staffing at time t

Gap between rotors

indicates no project

activity for that t

ti

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Cross-section at time ti

32

Design

(activity)

Requirements

Design

doc

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

A Richer Example

33

S1

Design/Build/

Requirements

Test/Build/

Deploy

Assess/…

Requirements/Architecture

assessment/Planning

Build/Design/

Requirements/Test

time

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

A Sample Cross-Section

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

A Cross-Section at Project End

35 

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Volume Indicates Where Time was 
Spent

36

Design/Build/

Requirements

Test/Build/

Deploy

Assess/…

Requirements/

Architecture Assessment / Planning

Build/Design/

Requirements/Test

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Two Further Examples of the Use 
of the Turbine Model 

⚫ A technically strong product-line

The core is quite large right from the beginning, as it 
contains a multitude of reusable artifacts from 
preceding projects

The activities here are to

⚫ Assess the artifacts as to whether they are 
appropriate for the new product

⚫ Parameterize them to meet the new project’s 
needs and perform any necessary customization

⚫ Integrate, assess, and deploy the product

37



Software Architecture: Foundations, Theory, and Practice

A Technically Strong Product-Line 
Project

38

Assessment

Parameterization
Customization

Deployment

Capture of new work

Other

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Two Further Examples of the Use 
of the Turbine Model (cont’d)

⚫ Agile development

Agile processes demonstrate and emphasize 
concurrency between a variety of kinds of 
development activities (e.g., requirements elicitation)

All the activities continue throughout the project

However, the skinny core indicates that the agile 
process denies development of any explicit 
architecture; rather the code is the architecture

The agile process starts with a core that is devoid of 
any architecture and terminates similarly

39



Software Architecture: Foundations, Theory, and Practice

Turbine Visualization of an Agile 
Development Process

40

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Two Further Examples of the Use 
of the Turbine Model (cont’d)

⚫ Agile development (cont’d)

The problems with this approach are made clear 
when a follow-on project is required in order to meet 
new demands

Unless the same development team is employed, a 
significant ring of activity will be required at the 
beginning of the project to simply understand the 
existing code base and the latent architecture, so that 
planning on how to meet the new needs can proceed

41



Software Architecture: Foundations, Theory, and Practice

Initial Portion of a Turbine Model 
of a Phase-2 Agile Process

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.



Software Architecture: Foundations, Theory, and Practice

Visualization Summary

⚫ It is illustrative, not prescriptive

⚫ It is an aid to thinking about what’s going on in a project

⚫ Can be automatically generated based on input of 
monitored project data

⚫ Can be extended to illustrate development of the 
information space (artifacts)

The preceding slides have focused primarily on the 
development activities

43



Software Architecture: Foundations, Theory, and Practice

Processes Possible in this Model

⚫ Traditional, straight-line waterfall

⚫ Architecture-centric development

⚫ DSSA-based project

⚫ Agile development

⚫ Dysfunctional process

44



Software Architecture: Foundations, Theory, and Practice

Other Processes and Process 
Models

⚫ One of the best is the Twin Peaks model by Bashar 
Nuseibeh

⚫ It emphasizes the co-development of requirements and 
architectures, incrementally elaborating details

⚫ It is representative of recent work in requirements 
engineering that is now giving much more prominence to 
the role of design and existing architectures in the 
activity of product conception

45



Software Architecture: Foundations, Theory, and Practice

The Twin Peaks Model

46



Software Architecture: Foundations, Theory, and Practice

Summary

⚫ A proper view of software architecture affects every 
aspect of the classical software engineering activities 

⚫ The requirements activity is a co-equal partner with 
design activities

⚫ The design activity is enriched by techniques that exploit 
knowledge gained in previous product developments

⚫ The implementation activity 

Is centered on creating a faithful implementation of 
the architecture 

Utilizes a variety of techniques to achieve this in a 
cost-effective manner 

47



Software Architecture: Foundations, Theory, and Practice

Summary (cont’d)

⚫ Analysis and testing activities can be focused on and 
guided by the architecture 

⚫ Evolution activities revolve around the product’s 
architecture

⚫ An equal focus on process and product results from a 
proper understanding of the role of software architecture 

48


