
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

The Big Idea

Software Architecture

Chapter 1

Software Architecture: Foundations, Theory, and Practice

The Origins

⚫ Software Engineers have always employed software
architectures

Very often without realizing it!

⚫ Address issues identified by researchers and
practitioners

Essential software engineering difficulties

Unique characteristics of programming-in-the-large

Need for software reuse

⚫ Many ideas originated in other (non-computing) domains

2

Software Architecture: Foundations, Theory, and Practice

Software Engineering Difficulties

⚫ Software engineers deal with unique set of problems

Young field with tremendous expectations

Building of vastly complex, but intangible systems

Software is not useful on its own e.g., unlike a car,
thus

It must conform to changes in other engineering
areas

⚫ Fred Brookes was the designer of IBM’s 360 OS and later
a professor in a USA university

3

Software Architecture: Foundations, Theory, and Practice

Software Engineering Difficulties
(cont’d)

⚫ According to his book “The Mythical Man Month”, which
provides insights into the nature of software
engineering:

⚫ Some problems can be eliminated

These are Brooks’ “accidental difficulties”

⚫ Other problems can be lessened, but not eliminated

These are Brooks’ “essential difficulties”

4

Software Architecture: Foundations, Theory, and Practice

Accidental Difficulties

⚫ Solutions exist

Possibly waiting to be discovered

⚫ Past productivity increases result of overcoming

Inadequate programming constructs & abstractions

⚫ Remedied by high-level programming languages

⚫ Increased productivity by factor of five

⚫ Complexity was never inherent in program at all

5

Software Architecture: Foundations, Theory, and Practice

Accidental Difficulties (cont’d)

⚫ Past productivity increases result of overcoming (cont’d)

Viewing results of programming decisions took long
time

⚫ Remedied by time-sharing

⚫ Turnaround time approaching limit of human
perception

Difficulty of using heterogeneous programs

⚫ Addressed by integrated software development
environments

⚫ Support task that was conceptually always possible

6

Software Architecture: Foundations, Theory, and Practice

Essential Difficulties

⚫ Only partial solutions exist for them, if any

⚫ Cannot be abstracted away

Complexity

Conformity

Changeability

Intangibility

7

Software Architecture: Foundations, Theory, and Practice

Complexity

⚫ No two software parts are alike

If they are, they are abstracted away into one

⚫ Complexity grows non-linearly with size

E.g., it is impossible to enumerate all states of
program

Except perhaps “toy” programs

8

Software Architecture: Foundations, Theory, and Practice

Conformity

⚫ Software is required to conform to its

Operating environment

Hardware

Interfaces

Standards

Political decisions

…

⚫ Often “last kid on block”

⚫ Perceived as most conformable

9

Software Architecture: Foundations, Theory, and Practice

Changeability

⚫ Change originates with

New applications, users, machines, standards, laws

Hardware problems

⚫ Software is viewed as infinitely malleable

10

Software Architecture: Foundations, Theory, and Practice

Intangibility

⚫ Software is not embedded in space

Often no constraining physical laws

⚫ No obvious representation

E.g., familiar geometric shapes

11

Software Architecture: Foundations, Theory, and Practice

Pewter Bullets

⚫ Ada, C++, Java and other high–level languages

⚫ Object-oriented design/analysis/programming

⚫ Artificial Intelligence

⚫ Automatic Programming

⚫ Graphical Programming

⚫ Program Verification

⚫ Environments & tools

⚫ Workstations

12

Software Architecture: Foundations, Theory, and Practice

Promising Attacks on Complexity (In
1987 by Brooks)

⚫ Buy vs. Build

⚫ Requirements refinement & rapid prototyping

Hardest part is deciding what to build (or buy?)

Must show product to customer to get complete specs

Need for iterative feedback

13

Software Architecture: Foundations, Theory, and Practice

Promising Attacks on Complexity
(cont’d)

⚫ Incremental/Evolutionary/Spiral Development

Grow systems, don’t build them

Good for morale

Easy backtracking

Early prototypes

⚫ Great designers

Good design can be taught; great design cannot

Nurture great designers

14

Software Architecture: Foundations, Theory, and Practice

Primacy of Design

⚫ Software engineers collect requirements, code, test,
integrate, configure, etc.

⚫ An architecture-centric approach to software engineering
places an emphasis on design

Design pervades the engineering activity from the
very beginning

⚫ But how do we go about the task of architectural
design?

15

Software Architecture: Foundations, Theory, and Practice

Analogy: Architecture of Buildings

⚫ We all live in them

⚫ (We think) We know how they are built

Requirements

Design (blueprints)

Construction

Use

⚫ This is similar (though not identical) to how we build
software

Requirements → Design → Detailed algorithms →
Code implementing the algorithms → Deployment
and use 16

Software Architecture: Foundations, Theory, and Practice

Some Obvious Parallels

⚫ Satisfaction of customers’ needs

⚫ Specialization of labor

⚫ Multiple perspectives of the final product

⚫ Intermediate points where plans and progress are
reviewed

17

Software Architecture: Foundations, Theory, and Practice

Deeper Parallels

⚫ Architecture is different from, but linked with the
product/structure

Its major elements, their composition and
arrangement, can be described, discussed and
compared with those of other buildings

⚫ Properties of structures are induced by the design of the
architecture

E.g., a medieval castle with high, thick walls and
narrow or nonexistent windows is designed that way
so that it has excellent defensive properties

⚫ The architect has a distinctive role and character
18

Software Architecture: Foundations, Theory, and Practice

Deeper Parallels (cont’d)

⚫ Process is not as important as architecture

Design and resulting qualities are at the forefront

Process is a means, not an end

⚫ Architecture has matured over time into a discipline

The notion of “architectural styles”, e.g., “Gothic
cathedral”, “Swiss chalet”, etc.

Architectural styles as sets of constraints, e.g., a
Swiss chalet has steep roofs to minimize the load
from snow

Styles also offer a wide range of solutions, techniques
and palettes of compatible materials, colors, and sizes

19

Software Architecture: Foundations, Theory, and Practice

More About the Architect

⚫ A distinctive role and character in a project

⚫ Very broad training

⚫ Amasses and leverages extensive experience

⚫ A keen sense of aesthetics

⚫ Deep understanding of the domain

Properties of structures, materials, and environments

Needs of customers

20

Software Architecture: Foundations, Theory, and Practice

More about the Architect (cont’d)

⚫ Even first-rate programming skills are insufficient for the
creation of complex software applications

But are they even necessary?

21

Software Architecture: Foundations, Theory, and Practice

Limitations of the Analogy …

⚫ We know a lot about buildings, much less about
software

⚫ The nature of software is different from that of building
architecture

⚫ Software is much more malleable than physical materials

⚫ The two “construction industries” are very different

⚫ Software deployment has no counterpart in building
architecture

⚫ Software is a machine; a building is not

The dynamic character of software creates difficulties
to designers with no counterpart in building design

22

Software Architecture: Foundations, Theory, and Practice

…But Still Very Real Power of
Architecture (the Big Idea)

⚫ Giving preeminence to architecture offers the potential
for

Intellectual control

Conceptual integrity

Adequate an effective basis for reuse

Effective project communication

Management of a set of variant systems

⚫ Limited-term focus on architecture will not yield
significant benefits!

⚫ Software Architecture must be at the very heart of
software system design and development 23

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW

⚫ This is the Web

⚫ Represented as a
set of data
(documents A to G)

and their
interrelationships in
the form of a
hypertext
document

24

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW

⚫ So is this

⚫ Represented
as a collection
of computers
interconnecte
d through the
Internet

25

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: WWW

⚫ And this

⚫ Represented as a set
of user agents and
origin servers,
interacting according
to the HTTP protocol

⚫ This is typically the
way users perceive
the Web

26

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

WWW in a (Big) Nutshell

⚫ The Web is a collection of resources, each of which has
a unique name known as a uniform resource locator, or
“URL”

⚫ Each resource denotes, informally, some information

⚫ URI’s can be used to determine the identity of a machine
on the Internet, known as an origin server, where the
value of the resource may be ascertained

⚫ Communication is initiated by clients, known as user
agents, who make requests of servers

Web browsers are common instances of user agents

27

Software Architecture: Foundations, Theory, and Practice

WWW in a (Big) Nutshell (cont’d)

⚫ Resources can be manipulated through their
representations

HTML is a very common representation language
used on the Web

⚫ All communication between user agents and origin
servers must be performed by a simple, generic protocol
(HTTP), which offers the command methods GET, POST,
etc.

⚫ All communication between user agents and origin
servers must be fully self-contained (so-called “stateless
interactions”)

28

Software Architecture: Foundations, Theory, and Practice

WWW’s Architecture

⚫ Architecture of the Web is wholly separate from the code

The architecture is the set of principal design
decisions that determine the key elements of of the
Web and their interelationships

⚫ There is no single piece of code that implements the
architecture; just looking at a single piece of code, or
even all the code on a single machine, will not explain
the Web structure

⚫ There are multiple pieces of code that implement the
various components of the architecture

E.g., different Web browsers
29

Software Architecture: Foundations, Theory, and Practice

WWW’s Architecture (cont’d)

⚫ Stylistic constraints of the Web’s architectural style are
not apparent in the code but at the same time the
effects of the constraints are evident in the Web

⚫ One of the world’s most successful applications is only
understood adequately from an architectural vantage
point

⚫ There are important observations, but still:

Why were these particular decisions made?

Why were these decisions important and not others?

Why did similar systems that made slightly different
decisions failed but the Web succeeded?

30

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: Desktop

⚫ Remember pipes and filters in Unix?

ls invoices | grep –e august | sort

⚫ Application architecture can be understood based on
very few rules

⚫ Applications can be composed by non-programmers

Akin to Lego blocks

⚫ A simple architectural concept that can be
comprehended and applied by a broad audience

31

Software Architecture: Foundations, Theory, and Practice

Architecture in Action: Product
Line

⚫ Motivating example

A consumer is interested in a 35-inch HDTV with a built-in DVD
player for the North American market

Such a device might contain upwards of a million lines of
embedded software

This particular television/DVD player will be very similar to a 35-
inch HDTV without the DVD player, and also to a 35-inch HDTV
with a built-in DVD player for the European market, where the
TV must be able to handle PAL or SECAM encoded broadcasts,
rather than North America’s NTSC format

These closely related televisions will similarly each have a million
or more lines of code embedded within them

32

Software Architecture: Foundations, Theory, and Practice

Growing Sophistication of
Consumer Devices

33

Software Architecture: Foundations, Theory, and Practice

Families of Related Products

34

Software Architecture: Foundations, Theory, and Practice

The Necessity and Benefit of PLs

⚫ Building each of these TVs from scratch would likely put
Philips out of business

⚫ Reusing structure, behaviors, and component
implementations is increasingly important to successful
business practice

It simplifies the software development task

It reduces the development time and cost

it improves the overall system reliability

⚫ Recognizing and exploiting commonality and variability
across products

35

Software Architecture: Foundations, Theory, and Practice

Reuse as the Big Win

⚫ Architecture: reuse of

Ideas

Knowledge

Patterns

Engineering
guidance

Well-worn
experience

⚫ Product families: reuse of

Structure

Behaviors

Implementations

Test suites …

36

Software Architecture: Foundations, Theory, and Practice

Added Benefit – Product
Populations

37

Software Architecture: Foundations, Theory, and Practice

Philips’ Koala Technology

⚫ Koala supports commonality and variability across
products

⚫ The product family notion extends to the growing
amount of software embedded in the different devices

⚫ A software system is implemented as a collection of
interacting components

Each component exports a set of services via a set of
provides interfaces

It also defines its its dependencies (h/w or s/w) via a
set of requires interfaces

38

Software Architecture: Foundations, Theory, and Practice

The Centerpiece – Architecture

39

Software Architecture: Foundations, Theory, and Practice

Philips’ Koala Technology (cont’d)

⚫ Koala uses three separate mechanisms to support
variability across products

Diversity interfaces allow a component to import
configuration-specific properties, which are external
to the component

Switches are connecting elements that allow a single
component to interact with one of a set of
components, depending on the value of a given run-
time parameter

Optional interfaces allow a component to either
provide or require additional functionality

40

Software Architecture: Foundations, Theory, and Practice

Combining Existing Products

41

Software Architecture: Foundations, Theory, and Practice

Summary

⚫ Software is complex

⚫ So are buildings

And other engineering artifacts

Building architectures are an attractive source of
analogy

⚫ Software engineers can learn from other domains

⚫ They also need to develop—and have developed—a rich
body of their own architectural knowledge and
experience

42

