
Internet Technologies
Introduction to Node.js and Express

Node.js

• Open-source, cross-platform runtime environment that allows developers
to create all kinds of server-side tools and applications in JavaScript
oRuntime is intended for use outside of a browser context (i.e. running directly on a

computer or server OS) → Download & install: https://nodejs.org/en/download

o relies on modules: built-in (e.g. http), third-party (e.g. express), user-defined

• Creating your own module is easy
o Just put your JavaScript code in a separate js (e.g. mymodule.js) file and include it in

your code by using keywork require, like

• Libraries in Node.js are called packages and they can be installed using NPM
by typing: on terminal

var modulex = require('./mymodule');

npm install package_name

https://nodejs.org/en/download

Benefits

• Great performance! Node was designed to optimize throughput and scalability in web
applications and is a good solution for many common web-development problems (e.g.
real-time web applications).

• Fast development! Code is written in "plain old JavaScript", which means that less time
is spent dealing with "context shift" between languages when you're writing both
client-side and server-side code.

• Access to numerous packages! The node package manager (npm) provides access to
hundreds of thousands of reusable packages. It also has best-in-class dependency
resolution and can also be used to automate most of the build toolchain.

• Portable development! It is available on Microsoft Windows, macOS, Linux, Solaris,
FreeBSD, OpenBSD, WebOS, and NonStop OS. Furthermore, it is well-supported by
many web hosting providers, that often provide specific infrastructure and
documentation for hosting Node sites.

• It has a very active third-party ecosystem and developer community, with lots of
people who are willing to help.

Node.js built-in modules

Module name Description

console console module is used to print information on stdout and stderr.

fs fs module is used for File I/O (read/write data on disk).

http http module is used transfer data over the HTTP protocol. The HTTP module creates an HTTP server
that listens to server ports and gives a response back to the client.

net net module provides servers and clients as streams. Acts as a network wrapper.

os os module provides basic operating system related utility functions.

path path module provides utilities for handling and transforming file paths.

process process module is used to get information on current process.

Create a Node.js application/project

• Create a folder to hold your application/project

• Open VS Code

• Open newly created
folder (1) within VS
Code

• Open terminal (2) to
run commands

1

2

Simple HTTP server in Node.js

• Create a web server
that listens for any
HTTP request on
http://127.0.0.1:8000/

• When a request is
received, the script
responds with the
string: "Hello World“

• Execute the command
node <filename>
on terminal

// Load HTTP module
const http = require("http");

const hostname = "127.0.0.1";
const port = 8000;

// Create HTTP server
const server = http.createServer(function (req, res) {

// Set the response HTTP header with HTTP status and Content type
res.writeHead(200, { "Content-Type": "text/plain" });
// Send the response body "Hello World"
res.end("Hello World\n");

});

// Prints a log once the server starts listening
server.listen(port, hostname, function () {

console.log(`Server running at http://${hostname}:${port}/`);
});

http://127.0.0.1:8000/

Simple HTTP server in Node.js

Web frameworks

• Common web-development tasks are not directly supported by Node
itself:
oAdd specific handling for different HTTP methods (e.g. GET, POST, DELETE, etc.)

o Separately handle requests at different URL paths ("routes" or endpoints)

o Serve static files, or use templates to dynamically create the response

• Node won't be of much use on its own

• You will either need to write the code yourself, or you can avoid
reinventing the wheel and use a web framework!

Express

• The most popular Node web framework. It provides mechanisms to:
oWrite handlers for requests with different HTTP methods at different URL paths

(routes)

o Integrate with "view" rendering engines in order to generate responses by
inserting data into templates – for static and dynamic websites

oAdd additional request processing "middleware" at any point within the request
handling pipeline

• Express itself is fairly minimalist but developers have created compatible
middleware packages to address almost any web development problem:
o Libraries to work with cookies, sessions, user logins, URL parameters, POST data,

security headers, and many more

Create an Express application/project

• Create a folder to hold your application/project

• Open VS Code

• Open newly created folder within VS Code

• Open terminal and run node install express to install Express

package.json and package-lock.json

• After Express installation, 2 new files are
automatically created:
opackage.json: It contains the list of dependencies

required for the project, along with their desired version
ranges specified using semantic versioning or specific
version numbers.

opackage-lock.json: It includes the specific resolved
versions of all the dependencies, their sub-
dependencies, and their exact installation locations. It
acts as a snapshot of the dependency tree for ensuring
consistent installations.

{
 "dependencies": {
 "express": "^4.19.2"
 }
}

Simple HTTP server in Express

• Fewer lines of
source code
compared to
Node

// Load Express module
const express = require("express");
// Create Express application
// app object has methods for routing HTTP requests, configuring middleware,
// rendering HTML views, registering a template engine, and modifying application
// settings that control how the application behaves
const app = express();
const port = 8001;

// Route definition
// Callback function will be invoked whenever there is an HTTP GET request with
// a path ('/') relative to the site root
app.get("/", function (req, res) {

// send() is used to reply with the string "Hello World!"
res.send("Hello World!");

});

// Launches the server on the specified port; prints a log comment to console
app.listen(port, function () {

console.log(`Example app listening on port ${port}!`);
});

Importing and creating modules

• A module is a JavaScript library/file that you can import into other code
using Node's require() function e.g. require("express")

• User-defined modules can be imported in the same way:
o To make objects available outside of a module you just need to expose them as

additional properties on the exports object

➢For example, the square.js module below is a file that exports area() and perimeter() methods

exports.area = function (width) {
 return width * width;
};
exports.perimeter = function (width) {
 return 4 * width;
};

square.js

// require() the name of the file
without the (optional) .js extension
const square = require("./square");

console.log(`The area of a square with
a width of 4 is ${square.area(4)}`);

otherfile.js

Importing and creating modules

• If you want to export a complete object in one assignment instead of
building it one property at a time, assign it to module.exports

module.exports = {
 area(width) {
 return width * width;
 },

 perimeter(width) {
 return 4 * width;
 },
};

square.js

Creating route (endpoint) handlers

• Routing refers to how an
application’s endpoints (URIs)
respond to client requests

• Routing is defined using methods of
the Express app object that
correspond to HTTP methods
o app.get() to handle GET requests

o app.post to handle POST requests

• Routing methods specify a callback
function (handler function) called
when the application receives a
request to the specified route
(endpoint)

const express = require('express')
const app = express()

// GET method route
app.get('/books', function (req, res) => {
// do something

})

// POST method route
app.post('/books', function (req, res) => {
// do something

})

// PUT method route
app.put('/books', function (req, res) => {
// do something

})

Callback functions (handlers)

• Invoked when an HTTP request is received on a specific path

• Response object can be used to send some response back to the requester
ores.send([body]) sends data and ends the request

➢body can be any of the following Buffer, String, Object, Array

➢Automatically sets the Content-Type response header based on the argument passed. However,
we can programmatically set the Content-Type header is possible via the set() method on the
res object: res.set('Content-Type', 'application/json');

ores.json() sends data in JSON format and ends the request
➢ identical to res.send() when an object or array is passed, but it also converts non-objects to json

// Callback function must take a request and a response object as arguments
app.get("/books", function (req, res) {
 // send() method called on response object to issue a reply message
 res.send({'id':1, 'title':'Odyssey');
});

SEE ALL
RESPONSE
METHODS

Setting a callback function (handler)

• First way

• Second way

• Third way

app.get("/books", function (req, res) {
 // do something
});

const f1 = function (req, res) {
 // do something
}
app.get("/books", f1);

app.get("/books", (req, res) => {
 // do something
});

Route parameters

• Pass values (route parameters) via the endpoint url

• Captured values are populated in the req.params object
onames of route parameters specified in the path are found as object keys

o The name of route parameters must be made up of “word characters” ([A-Za-
z0-9_]).

app.get("/books/:bid/reviews/:rid", function (req, res) {
 res.send("Book id: " + req.params['bid'] + " and review id: " + req.params['rid']);
});

Using middleware

• Route functions (we have already seen) end the HTTP request-response
cycle by returning some response to the HTTP client

• Middleware functions typically perform some operation on the request
or response and then call the next function in the "stack", which might
be more middleware or a route handler
o The order in which middleware is called is up to the app developer.

Callback functions as middleware

• We can provide multiple callback functions that behave like middleware to
handle a request. Need to invoke next() to proceed to the next callback.

const f1 = function (req, res, next) {
 // do something, e.g. checks on the received data
 next(); // proceed to the next callback function
}

const f2 = function (req, res) {
 res.send("John Smith");
}

app.get("/users", [f1, f2]);

Third-party middleware package

• Install morgan HTTP request logger middleware:
onpm install morgan

• Use morgan middleware

const express = require("express");
const logger = require("morgan");
const app = express();

// call use() on the Express application object to add the middleware to the stack
// i.e. to the processing chain of all responses
app.use(logger("dev"));

Effect after applying the morgan middleware:
whenever a request is received at the
listening server-side program, morgan logger
prints a dedicated message to console

https://expressjs.com/en/resources/middleware/morgan.html

User-defined function as middleware for
handling error

• Errors are handled by one or more special middleware functions that have
four arguments (err, req, res, next) instead of the usual three. For example:

• This function can return any content required, but must be called after all
other app.use() and routes calls so that it is the last middleware in the
request handling process!

• In order to have this function called, an error must be sent via the next()
function from a previous middleware or a route handler (see example later)

app.use(function (err, req, res, next) {
 console.error(err.stack);
 res.status(500).send("Something broke!");
});

Body parsers as middleware

• Some messages (e.g. POST, PUT) usually carry data in body

• Data are expressed in multiple formats: JSON, URL-encoded, plain text,
multipart/form-data, etc.

• Appropriate body parser(s) need to be added as middleware prior defining
route handlers:
oBody parsers add a body property to the Express request req so data is accessible

via req.body

o For JSON data: app.use(express.json());
➢ JSON parser is applied when received message header Content-Type is application/json

➢ If JSON body is malformed, custom error handling middleware will be called (if any, see previous
slide) otherwise the default Express error handling middleware will respond with an HTTP 400.

Body parsers as middleware: example

• Receive JSON data from a POST message

// Parse JSON bodies
// Make sure you put `app.use(express.json())` **before** your route handlers!
app.use(express.json());

app.post("/books", function (req, res) {
 // The json() middleware adds a body property (object) to the Express request req
 console.log(req.body);
});

Using databases

• Express apps can use any database mechanism supported by Node.js
including: PostgreSQL, MySQL, MariaDB, MSSQL, Redis, SQLite,
MongoDB
oDatabase driver must be installed using npm in advance

• Install MySQL driver (can be used to connect to MySQL and MariaDB)
onpm install mysql

• Use MySQL

const mysql = require("mysql");

Connect to database

• Create a single connection to database and use it throughout the
program (to make multiple queries on the database tables)

const con = mysql.createConnection({
 host: "localhost",
 user: "root",
 password: "",
 database: "library"
});

con.connect(function(err) {
 if (err) {
 // send error to the next middleware (for handling errors)
 return next(err);
 // return next(); will call the default Express error handling middleware
 }
});

Query the database

• Use the single connection that was initially created to run queries on the
database tables

• What happens if a query to database takes a long time to return results?
Is your system able to serve an HTTP request from another client?
oNo, only one connection to db is available for all incoming HTTP requests

app.get("/books", function (req, res, next) {
 con.query("SELECT * FROM books", function (err, result, fields) {
 if (err) // error on query
 return next(err);
 else
 res.send(result);
 });
})

Array of objects

Connect to database using connection pool
• Connection pool: set of database connections maintained so that the

connections can be reused when future requests to the database are
required - Connection pools are used to enhance the performance of executing commands on a database

const pool = mysql.createPool({
 connectionLimit: 10, // in this example, pool allows up to 10 parallel connections
 host: 'localhost',
 user: 'root',
 password: '',
 database: 'library'
});
app.get("/books", function (req, res, next) {
 pool.query("SELECT * FROM books", function (err, result, fields) {
 if (err) return next(err);
 else
 res.send(result);
 }); // when a query is over, the connection is released and is returned to the pool
});

More info on
connection pooling
can be found here.

https://github.com/mysqljs/mysql?tab=readme-ov-file#pooling-connections

Exercise

• Create a REST API server (with connection pool) in Node.js/Express that
defines the following endpoints:

Method Endpoint Description Status response code Returned data

GET /books Returns all books* 200 OK Array of books

GET /books/:id Returns a single book indicated by its id* 200 OK / 404 Not found^ A book / {'status': 'ok’}^

POST /books Creates a new book** 201 Created {'status': 'ok'}

PUT /books/:id Updates a book** 200 OK {'status': 'ok'}

DELETE /books Deletes all books 204 No Content {'status': 'ok'}

DELETE /books/:id Deletes a single book indicated by its id 204 No Content {'status': 'ok'}

* Data is returned to client in JSON format
** Data is provided by client in JSON format
^ If no book found in database

This exercise requires a database with a books table with the same structure as described in
the previous lab.
You can create the database and the books table in XAMPP (via phpMyAdmin) by importing
the library.sql file provided in EPL425 lab web page (if it is not already in place).

https://www.cs.ucy.ac.cy/courses/EPL425/labs/Lab12/library.sql

Appendix

Response methods
• Methods on the response object (res) can send a response to the client,

and terminate the request-response cycle. If none of these methods are
called from a route handler, the client request will be left hanging.
Method Description

res.download() Prompt a file to be downloaded.

res.end() End the response process. No response message will be sent.

res.json() Send a JSON response.

res.jsonp() Send a JSON response with JSONP support.

res.redirect() Redirect a request.

res.render() Render a view template.

res.send() Send a response of various types.

res.sendFile() Send a file as an octet stream.

res.sendStatus() Set the response status code and send its string representation as the response body.

	Slide 1: Internet Technologies
	Slide 2: Node.js
	Slide 3: Benefits
	Slide 4: Node.js built-in modules
	Slide 5: Create a Node.js application/project
	Slide 6: Simple HTTP server in Node.js
	Slide 7: Simple HTTP server in Node.js
	Slide 8: Web frameworks
	Slide 9: Express
	Slide 10: Create an Express application/project
	Slide 11: package.json and package-lock.json
	Slide 12: Simple HTTP server in Express
	Slide 13: Importing and creating modules
	Slide 14: Importing and creating modules
	Slide 15: Creating route (endpoint) handlers
	Slide 16: Callback functions (handlers)
	Slide 17: Setting a callback function (handler)
	Slide 18: Route parameters
	Slide 19: Using middleware
	Slide 20: Callback functions as middleware
	Slide 21: Third-party middleware package
	Slide 22: User-defined function as middleware for handling error
	Slide 23: Body parsers as middleware
	Slide 24: Body parsers as middleware: example
	Slide 25: Using databases
	Slide 26: Connect to database
	Slide 27: Query the database
	Slide 28: Connect to database using connection pool
	Slide 29: Exercise
	Slide 30: Appendix
	Slide 31: Response methods

