
Internet Technologies
RESTful API Client

What is RESTful API?

• RESTful API is an interface between software components (e.g. apps and
databases) communicating over the Internet that want to exchange
(upload / download) data

Web Server (PHP API) or
Application Server (Java/Python/JavaScipt/C# API)

RESTful API

Website or
other Web app

Desktop app or
Mobile app

HTTP Request
GET

POST
PUT

DELETE

Database
Server

What is RESTful API?

• Apps send HTTP messages (e.g. GET to download data, POST to upload data) to RESTful API

• RESTful API pushes/pulls data to/from database and replies to apps
appropriately

RESTful API

Website or
other Web app

Desktop app or
Mobile app

HTTP Request
GET

POST
PUT

DELETE

Database
Server

Web Server (PHP API) or
Application Server (Java/Python/JavaScipt/C# API)

What is RESTful API?

• Exchanged data is described using specific formats such as JSON and XML
(JSON is more popular because it is more lightweight & easier to parse)

RESTful API

Website or
other Web app

Desktop app or
Mobile app

HTTP Request
GET

POST
PUT

DELETE

Database
Server

Web Server (PHP API) or
Application Server (Java/Python/JavaScipt/C# API)

What is RESTful API?

• Example: a mobile application calls a Weather API function (endpoint) to
get the current weather conditions of a given location. Weather API queries
the database, formats query results as JSON and sends it back to app

• App extracts data from JSON to display on its UI

RESTful API

HTTP Request
GET

Database
Server

https://api.openweathermap.org/

data/2.5/weather?lat=35.1856&

lon=33.3823

{"coord":{"lon":33.3823,"lat":35.1856},"weather

":[{"id":801,"main":"Clouds","description":"few

clouds","icon":"02n"}],"base":"stations","main"

:{"temp":284.09,"feels_like":283.51,"temp_min":

284.09,"temp_max":285.31,"pressure":1021,"humid

ity":87},"visibility":6000,"wind":{"speed":2.57

,"deg":270},"clouds":{"all":20},"dt":1670626898

,"sys":{"type":1,"id":6370,"country":"CY","sunr

ise":1670647439,"sunset":1670682876},"timezone"

:7200,"id":146233,"name":"Panagia","cod":200}

Web Server (PHP API) or
Application Server (Java/Python/JavaScipt/C# API)

What is RESTful API?

• RESTful APIs can be built with server-side programming languages such as
Java, Python, JavaScript, C# (hosted on application servers) or PHP
(hosted on web servers)

RESTful API

Website or
other Web app

Desktop app or
Mobile app

HTTP Request
GET

POST
PUT

DELETE

Database
Server

Web Server (PHP API) or
Application Server (Java/Python/JavaScipt/C# API)

RESTful API Usage

• Over the past few years, RESTful APIs have gained popularity in the
market
o For instance, each time you check the weather or book a travel ticket, one or

more APIs are involved for pulling data from databases

• RESTful APIs enable businesses to open their applications’ data and
functionality to external third-party developers, it eventually grows
business partnerships, driving more revenue.

4 Commonly Used RESTful API Methods

• Each request is sent as an HTTP request
oGET: Receive information about an API resource

oPOST: Create a new API resource

oPUT: Update an existing API resource

oDELETE: Delete an API resource

• Requests are sent to base URL, also known as an "API Endpoint"

RESTful API Endpoint example

• api.openweathermap.org/data/2.5/weather?q=Nicosia,cy&units=metric
&APPID=xxxx
oweather: Tells the server that we are requesting the “current weather” resource

oq=Nicosia,cy&units=metric : Query the server to return weather about Nicosia,cy
location in metric system of measurement (Celsius, meters)

oAPPID=xxxx : Tells the server the identifier of the API caller (caller authentication)
*** OpenWeatherMap API offers weather information for locations across the globe. Create account and get APIID from here.

parameters

https://openweathermap.org/api
https://home.openweathermap.org/users/sign_in

3rd-Party RESTful APIs

• Many websites expose RESTful APIs to outside developers. These are
often called "3rd-party APIs" or "Developer APIs“

• Examples:
o Spotify

oGiphy

oGitHub

oGoogle APIs

o Facebook

o Instagram

o etc...

Try Googling
"<product name> API"
to see if one exists for a
given company!

Open API Example: Cyprus Water

• Cyprus Water is an open RESTful API that developers can query to get
data and functionality on water reservoirs in Cyprus

• Available endpoints:
Base URL: https://cyprus-water.appspot.com

Method Endpoint Usage Returns Required parameters

GET /api/dams Static information about the main water
reservoirs

json

GET /api/date-statistics Statistics of water reservoirs on a specific
date

json date=[yyyy-MM-dd]

GET /api/percentages Storage percentages of the main water
reservoirs on a specific date

json date=[yyyy-MM-dd]

GET /api/monthy-inflows Historical monthly inflows throughout time json

https://cyprus-water.appspot.com/api

How to consume/build RESTful APIs?

• Consume RESTful Web Services (RESTful API client)
o The easiest way to start using an API is by finding a RESTful client application online,

like Postman, or Paw (for MAC). These ready-made (and often free) tools help you
structure your HTTP requests to consume existing REST APIs

o Develop JAVA RESTful API client: Jersey (https://eclipse-ee4j.github.io/jersey/), Spring
Boot (https://spring.io/guides/gs/consuming-rest/)

• Serve RESTful Web Services (RESTful API server): (NEXT LABs)
o Develop JAVA RESTful API server: Jersey (https://eclipse-ee4j.github.io/jersey/), Spring

Boot (https://spring.io/guides/gs/rest-service/)

o Develop JavaScript RESTful API server: Node.js (https://nodejs.org/) and Express
(https://expressjs.com/)

o Develop Python RESTful API server: Flask (https://flask-restful.readthedocs.io/en/latest/),
Django REST framework (https://www.django-rest-framework.org/)

https://www.postman.com/
https://paw.cloud/
https://eclipse-ee4j.github.io/jersey/
https://spring.io/guides/gs/consuming-rest/
https://eclipse-ee4j.github.io/jersey/
https://spring.io/guides/gs/rest-service/
https://nodejs.org/
https://expressjs.com/
https://flask-restful.readthedocs.io/en/latest/
https://www.django-rest-framework.org/

Java or Python for serving RESTful APIs?

• Java is recommended for enterprise-level, high-load APIs
o Slower development time
o Heavier resource (RAM) usage
o Easier application packaging (.jar)
o Significant version dependence => expensive system support

• JavaScript is recommended for fast-prototyping, medium-load APIs
o Use the same familiar syntax for both client and server-side tasks (faster development time)
o Lightweight resource usage, ideal for real-time data processing
o Slower than Java

• Python is recommended for fast-prototyping, low-load, personal-use APIs
o Faster development time
o No compilation, faster testing
o Minimal version dependence (given than Python 2.x is deprecated and rarely used)

Postman: RESTful API client to generate
HTTP requests and receive data

• Complete toolchain for API developers

• Offers a lot of features to simplify generating web server requests

• Used by over 20 million developers worldwide to access million of
APIs every month

• Available for Windows, Linux, Mac

• Can downloaded for free from the project website
o You can install it on your Windows (host machine) as a Windows APP or as a

plugin of your web browser

oAvailable as a snap package in Ubuntu VM

➢ Installation command: sudo snap install postman

RESTful Client Application: Postman

https://www.postman.com/downloads/

RESTful Client Application: Postman

Use Postman to send GET message to /date-
statistics endpoint in Cyprus Water RESTful API

Either enter the parameter (date) within the URL OR in the Params window

RESTful Client Application: Postman

Response Data

RESTful Client Application: Postman

 Content-Type is application/json

API is served by Google Frontend

RESTful Client Application: Postman

Prerequisites

• Download and install Java/JDK (if JDK 17 or later is not already
installed on your machine)

• Set the JAVA_HOME environment variable

• Download and install latest Maven package

• Set the MAVEN_HOME environment variable

• Download and Install Python (if Python 3.x or Anaconda is not already
installed on your machine)

• Open VS Code and install the following extensions:
oProject Manager for Java by Microsoft

oMaven for Java by Microsoft

RESTful Client and Server Development

https://www.python.org/downloads/

RESTful API Client in Java using Spring Boot

• Spring Boot makes it easy to create stand-alone, production/enterprise-
level applications easily that you can "just run"
oProvides boilerplate (pre-written) code (that may be reuse on various projects

with little or no modification) to save developers from repeating common steps

• Getting Started
• Super quick — try the Quickstart Guide.

• More general — try Building an Application with Spring Boot

• More specific — try Consuming a RESTful Web Service (REST Client).

• More specific — try Building a RESTful Web Service (REST Server) – NEXT LAB

• Or search through all guides on the Guides homepage.

RESTful Client Development: Spring Boot

https://spring.io/projects/spring-boot
https://spring.io/quickstart
https://spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/consuming-rest/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides

RESTful API Client in Java using Spring Boot

• Build an application that uses Spring’s RestTemplate

• Start from scratch: Spring Initializr
oWeb-based, fast way to pull in all the dependencies we need for an application

o In this project, we need to include only the “Spring Web” dependency

oAfter we set the parameters (see next slide) we press Generate at the bottom
of the page to download the zip folder of the project

RESTful Client Development: Spring Boot

https://spring.io/guides/gs/consuming-rest/
https://start.spring.io/

"Spring Web" dependency

Generate project (RestClientBoot.zip will be downloaded)

RESTful Client Development: Spring Boot

Open Spring Boot Project in VS Code

• Extract RestClientBoot.zip

• Open VS code

• Click on Explorer tab

• Click on Open Folder

• Select the RestClientBoot
directory

RESTful Client Development: Spring Boot

Compile Spring Boot Maven Project

• Open the MAVEN tab in
EXPLORER

• Select the RestClientBoot
project

• Open Lifecycle and run the
compile command

RESTful Client Development: Spring Boot

Run Spring Boot Maven Project

• Run the project

• The default Spring Web Boot
project does not provide any
functionality

• In the next few slides we will
add a few Java classes to
obtain data from a RESTful API

RESTful Client Development: Spring Boot

RESTful API Client in Java using Spring Boot

• Use https://nationalize.io/ RESTful API to predict the nationality of a name

{

 "name": "pavlos",

 "country": [

 {

 "country_id": "CY",

 "probability": 0.6239777660881337

 },

 {

 "country_id": "GR",

 "probability": 0.3572708199586962

 },

 {

 "country_id": "CZ",

 "probability": 0.00612225866824608

 }

]

}

https://api.nationalize.io?name=pavlos

RESTful Client Development: Spring Boot

REQUEST

REPLY

https://nationalize.io/

RESTful API Client in Java using Spring Boot
• Initalizr created class RestClientBootApplication.java with a main() at
src/main/java/cy/ac/ucy/cs/epl425/restclient/RestClientBoot/

• We need to add a few other things (shaded below)

RESTful Client Development: Spring Boot

@SpringBootApplication

public class RestClientBootApplication {

 // A logger, to send output to the log (the console, in this example)

 private static final Logger log = LoggerFactory.getLogger(RestClientBootApplication.class);

 public static void main(String[] args) {

 SpringApplication.run(RestClientBootApplication.class, args);

 }

 // A RestTemplate, which uses the Jackson JSON processing library to process the incoming data.

 @Bean

 public RestTemplate restTemplate(RestTemplateBuilder builder) {

 return builder.build();

 }

 // A CommandLineRunner that runs the RestTemplate (and, consequently, fetches data) on startup.

// Deserialize response bytes into a JAVA class: Nationalize class

 @Bean

 public CommandLineRunner run(RestTemplate restTemplate) throws Exception {

 return args -> {

 Nationalize nationalize = restTemplate.getForObject(

 "https://api.nationalize.io?name=pavlos", Nationalize.class);

 log.info(nationalize.toString()); // print object with REST data in logs

 };

 }

}

• Create a model class e.g. Nationalize.java to
accomodate the data that we will consume in
src/main/java/cy/ac/ucy/cs/epl425/restclient/RestClientBoot

{

 "name": "pavlos",

 "country": [

 {

 "country_id": "CY",

 "probability": 0.6239777660881337

 },

 {

 "country_id": "GR",

 "probability": 0.3572708199586962

 },

 {

 "country_id": "CZ",

 "probability": 0.00612225866824608

 }

]

}

Country.java (next slide)

Nationalize.java

See Here

RESTful Client Development: Spring Boot

• Additional class to capture the inner country
info e.g. Country.java, in the same folder:
src/main/java/cy/ac/ucy/cs/epl425/restclient/RestClientBoot

{

 "name": "pavlos",

 "country": [

 {

 "country_id": "CY",

 "probability": 0.6239777660881337

 },

 {

 "country_id": "GR",

 "probability": 0.3572708199586962

 },

 {

 "country_id": "CZ",

 "probability": 0.00612225866824608

 }

]

}

Country.java
RESTful Client Development: Spring Boot

See Here

RESTful API Client in Java using Spring Boot

• RestClientBootApplication.java libraries to be imported:

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.web.client.RestTemplateBuilder;

import org.springframework.context.annotation.Bean;

import org.springframework.web.client.RestTemplate;

RESTful Client Development: Spring Boot

Run Spring Boot RESTful API Client

• unzip RestClientBoot.zip you created through Spring Initializr

• Download from lab’s website the following files:
oNationalize.java

oCountry.java

oRestClientBootApplication.java

and place them into
src/main/java/cy/ac/ucy/cs/epl425/restclient/RestClientBoot/

• Compile and run application (see next slide)

RESTful Client Development: Spring Boot

Create, Compile & Run in VS Code

https://www.cs.ucy.ac.cy/courses/EPL425/labs/Lab11/Nationalize.java
https://www.cs.ucy.ac.cy/courses/EPL425/labs/Lab11/Country.java
https://www.cs.ucy.ac.cy/courses/EPL425/labs/Lab11/RestClientBootApplication.java

Run Spring Boot RESTful API Client

1

2

Create, Compile & Run in VS Code

RESTful Client Development: Spring Boot

APPENDIX A
JSON related

@JsonIgnoreProperties ignoreUnknown

• When we pass true to ignoreUnknown element, then in deserialization
if JSON document has a field (property) for which there is no logical
property then that JSON field will be ignored, and no error will be thrown.

• Consider the following class:
@JsonIgnoreProperties(ignoreUnknown = true)

public class Book {

 @JsonProperty("bookId")

 private String id;

 @JsonProperty("bookName")

 private String name;

 @JsonProperty("bookCategory")

 private String category;

} I

In this class we have bookId,
bookName and
bookCategory logical
properties.

@JsonIgnoreProperties ignoreUnknown

• Suppose we have a JSON document with some unknown fields (properties).

• In the above JSON fields, pubYear and price has no corresponding
logical properties in Book class. In deserialization, we will not get exception
because we are using ignoreUnknown = true in
@JsonIgnoreProperties annotation.

{

 "bookId" : "A101",

 "bookName" : "Learning Java",

 "bookCategory" : "Java",

 "pubYear" : "2018",

 "price" : "200",

}

@JsonNaming and @JsonProperty

• PROBLEM: Jackson (JSON library) ignores snake case JSON fields

• SOLUTIONS (any of the two):
1. Use @JsonNaming(PropertyNamingStrategy.SnakeCaseStrategy.class) to

define a global naming convention for JSON deserialization

2. To directly bind your data to your custom types, you need to specify the variable
name to be exactly the same as the field (property) in the JSON document
returned from the API. In case your variable name and field in JSON doc do not
match, you can use @JsonProperty annotation to specify the exact key of
the JSON document

APPENDIX B
Instructions on how to Download and Install

Java and Apache Maven

Download and Install JDK

• Latest JDK installer (.exe for Windows):
https://www.oracle.com/java/technologies/downloads

• Double click to install it

• For MAC users: see here for installation and for setting the
environmental variable

https://www.oracle.com/java/technologies/downloads
https://www.digitalocean.com/community/tutorials/install-maven-mac-os

Set JAVA_HOME (for Windows)

1. Locate your JDK installation directory
o If you didn't change the path during installation, it'll be something like C:\Program Files\Java\jdk-18.0.2.1

2. In Windows 10/11, Search for Environment Variables then select “Edit the system environment
variables”

3. Click the Environment Variables button:

4. Under System Variables, click New.

5. In the Variable Name field enter JAVA_HOME

6. In the Variable Value field, enter your JDK
installation path (step 1)

7. Click OK

8. In System Variables, double-click on “Path”

9. Click on New and enter %JAVA_HOME%\bin

10. Click OK

11. Installation verification: open cmd and type java -version and javac -version

Download and Install MAVEN

• Go to https://maven.apache.org/download.cgi

• For Windows, download binary .zip archive

• For MAC, download binary .tar.gz archive

• Extract binaries and note the path
o For Windows e.g. C:\Program Files\apache-maven-3.8.6

oCheck that the folder bin\ is within the above maven folder

• For MAC users: see here for installation and for setting the
environmental variable

https://maven.apache.org/download.cgi
https://www.digitalocean.com/community/tutorials/install-maven-mac-os

Set MAVEN_HOME (for Windows)

1. Locate your MAVEN installation directory
o E.g. C:\Program Files\apache-maven-3.8.6

2. In Windows 10/11, Search for Environment Variables then select “Edit the system environment
variables”

3. Click the Environment Variables button:

4. Under System Variables, click New.

5. In the Variable Name field enter MAVEN_HOME

6. In the Variable Value field, enter your
MAVEN installation path (step 1)

7. Click OK

8. In System Variables, double-click on “Path”

9. Click on New and enter %MAVEN_HOME%\bin

10. Click OK

11. Installation verification: open cmd and type mvn -v

	Slide 1: Internet Technologies
	Slide 2: What is RESTful API?
	Slide 3: What is RESTful API?
	Slide 4: What is RESTful API?
	Slide 5: What is RESTful API?
	Slide 6: What is RESTful API?
	Slide 7: RESTful API Usage
	Slide 8: 4 Commonly Used RESTful API Methods
	Slide 9: RESTful API Endpoint example
	Slide 10: 3rd-Party RESTful APIs
	Slide 11: Open API Example: Cyprus Water
	Slide 12: How to consume/build RESTful APIs?
	Slide 13: Java or Python for serving RESTful APIs?
	Slide 14: Postman: RESTful API client to generate HTTP requests and receive data
	Slide 15
	Slide 16: Use Postman to send GET message to /date-statistics endpoint in Cyprus Water RESTful API
	Slide 17
	Slide 18
	Slide 19: Prerequisites
	Slide 20: RESTful API Client in Java using Spring Boot
	Slide 21: RESTful API Client in Java using Spring Boot
	Slide 22
	Slide 23: Open Spring Boot Project in VS Code
	Slide 24: Compile Spring Boot Maven Project
	Slide 25: Run Spring Boot Maven Project
	Slide 26: RESTful API Client in Java using Spring Boot
	Slide 27: RESTful API Client in Java using Spring Boot
	Slide 28
	Slide 29
	Slide 30: RESTful API Client in Java using Spring Boot
	Slide 31: Run Spring Boot RESTful API Client
	Slide 32: Run Spring Boot RESTful API Client
	Slide 33: APPENDIX A
	Slide 34: @JsonIgnoreProperties ignoreUnknown
	Slide 35: @JsonIgnoreProperties ignoreUnknown
	Slide 36: @JsonNaming and @JsonProperty
	Slide 37: APPENDIX B
	Slide 38: Download and Install JDK
	Slide 39: Set JAVA_HOME (for Windows)
	Slide 40: Download and Install MAVEN
	Slide 41: Set MAVEN_HOME (for Windows)

