
Internet Technologies
Introduction to JavaScript

What we've learned so far

+ produces

Describes the
content and

structure of the
page

Describes the
appearance and
style of the page

A web page… that doesn't do anything!!!

What we've learned so far

• We've learned how to build web pages that:
o Look the way we want them to

oCan link to other web pages

oDisplay differently on different screen sizes (responsive)

• But we don't know how to build web pages that do something like:
oGet user input

o Save user input

o Show and hide elements when the user interacts with the page

o etc.

… so we enter JavaScript

JavaScript

• JavaScript is a programming language.
ohas nothing to do with Java; said to be named that way for marketing reasons

o first version was written in 10 days

o several fundamental language decisions were made because of company politics
and not technical reasons

• However, it is currently the only programming language that your browser
can execute natively.

• Therefore if you want to make your web pages do stuff, you must use
JavaScript: There are no other options.

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

ECMAScript

• European Computer Manufacturers Association (ECMAScript) or (ES) is a
standard for scripting languages like JavaScript, ActionScript and Jscript
o JavaScript was invented by Brendan Eich in 1995, and became an ECMA standard

in 1997

• ECMAScript was initially created to standardize JavaScript, which is the
most popular implementation of ECMAScript and ensure the
interoperability of web pages across different browsers
o Early ECMAScript versions have been abbreviated to ES1, ES2, ES3, ES5, and ES6

o Since 2016, versions are named by year (ECMAScript 2016, 2017, 2018, 2019,
2020, 2021, 2022) – see version history and updates per edition

https://en.wikipedia.org/wiki/ECMAScript_version_history

Code in web pages

<!DOCTYPE html>
<html>
 <head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
 </head>
 <body>
 ... contents of the page...
 </body>
</html>

console.log

• You can print log messages in JavaScript by calling console.log():

• This JavaScript's equivalent of Java's System.out.println, C’s printf, etc.

console.log('Hello, world!');
JS

How does JavaScript get loaded?
<head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
</head>

The browser is parsing the HTML file, and gets to a script
tag, so it knows it needs to get the script file as well.

How does JavaScript get loaded?
<head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
</head>

The browser makes a request to the server for the script.js
file, just like it would for a CSS file or an image...

Internet

How does JavaScript get loaded?
<head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
</head>

And the server responds with the JavaScript file, just like it
would with a CSS file or an image...

Internet

How does JavaScript get loaded?
<head>
 <title>CS 425</title>
 <link rel="stylesheet" href="style.css" />
 <script src="script.js"></script>
</head>

Now at this point, the JavaScript file will execute
"client-side", or in the browser on the user's computer

console.log('Hello, world!');
JS

JavaScript execution

• There is no "main method"
o The script file is executed from top to bottom.

• There's no compilation by the developer
o JavaScript is compiled and executed on the fly by the browser

Simple Example

<!DOCTYPE html>
<html>
 <head>
 <title>First JS Example</title>
 <script src="script.js"></script>
 </head>
 <body>
</body>
</html>

HTML

console.log('Hello, world!');
script.js Nothing happened!

Simple Example

<!DOCTYPE html>
<html>
 <head>
 <title>First JS Example</title>
 <script src="script.js"></script>
 </head>
 <body>
</body>
</html>

HTML

console.log('Hello, world!');
script.js Right-click (or control-

click on Mac) and
choose "Inspect"

Click "Console" tab

Console

The "Console" tab is also a (Read-Eval-Print Loop, REPL), or an
interactive language shell, so you can type in JavaScript
expressions, etc. to test out the language.

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

alert() method

• The alert() method displays an alert box
with a specified message and an OK
button.

• An alert box is often used if you want to
make sure information comes through
to the user.

• Note: The alert box takes the focus
away from the current window and
forces the browser to read the message.
Do not overuse this method, as it
prevents the user from accessing other
parts of the page until the box is closed.

Same as Java/C++/C-style languages

• for-loops:
for (let i = 0; i < 5; i++) { ... }

• while-loops:
while (notFinished) { ... }

• comments:
// comment or /* comment */

• conditionals (if statements):
if (...) {

... }
else {

... }

Variables: var, let, cons

• Declare a variable in JS with one of three keywords:

• You do not have to declare the datatype of the variable before using it
("dynamically typed")

// Function scope variable
var x = 15;
// Block scope variable {}
let fruit = 'banana';
// Block scope constant; cannot be reassigned
const isHungry = true;

JS

http://stackoverflow.com/questions/1517582/what-is-the-difference-between-statically-typed-and-dynamically-typed-languages

What's a "block"?

• In the context of programming languages, a block is a group of 0 or
more statements, usually surrounded by curly braces. (wiki / mdn)
oAlso known as a compound statement

oNot JavaScript-specific; exists in most languages (C++, Java, Python, etc)

oHas absolutely nothing to do with the HTML/CSS notion of "block", i.e. block
elements

• Α block might look like

{
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

JS

https://en.wikipedia.org/wiki/Block_(programming)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block

Variables best practices

• Use const whenever possible.

• If you need a variable to be reassignable, use let.

• Not doing so will result in global variables.
oWe want to avoid polluting the global namespace.

• Avoid using var.
o You will see a ton of example code on the internet with var

since const and let are relatively new.

oHowever, const and let are well-supported, so there's no
reason not to use them.

o (This is also what the Google and AirBnB JavaScript Style
Guides recommend.)

Aside: The
internet has a

ton of
misinformation

about JavaScript!

Including several
"accepted"

StackOverflow
answers, tutorials, etc.
Lots of stuff online is

years out of date.
Treat carefully.

https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Types

• JS variables do not have types, but the values do.

• There are six primitive types (mdn):
oBoolean: true and false

oNumber: everything is a double (no integers)

o String: in 'single' or "double-quotes"

oundefined: variable has been declared but has not yet been assigned a value

onull: is an assignment value, but null is a value meaning "this has no value"

• There are also Object types, including Array, Date, String (the object
wrapper for the primitive type), etc.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Glossary/Boolean
https://developer.mozilla.org/en-US/docs/Glossary/Number
https://developer.mozilla.org/en-US/docs/Glossary/String
https://developer.mozilla.org/en-US/docs/Glossary/Undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Boolean

• There are two literal values for boolean:
otrue and false that behave as you would expect

• Can use the usual boolean operators: && || !

• Non-boolean values can be used in control statements, which get
converted to their "truthy" or "falsy" value:
onull, undefined, 0, NaN, '' , "" evaluate to false

o Everything else evaluates to true

if (username) {
 // username has been declared
 // and assigned a non null value
}

JS

Numbers

• const homework = 0.45;

• All numbers are floating point real numbers.

• No integer type.

• Operators are like Java or C++.

• Precedence like Java or C++.

• A few special values: NaN (not-a-number), +Infinity, -Infinity

• There's a Math class: Math.floor, Math.ceil, etc.

Strings

• let snack = 'coo';

• snack += 'kies';

• snack = snack.toUpperCase();

• Can be defined with single or double quotes
oMany style guides prefer single-quote, but there is no functionality difference

• Immutable

• No char type: letters are strings of length one

• Can use plus for concatenation

• Can check size via length property (not function)

let abc = "abcdefghijklmnopqrstuvwxyz";
let esc = 'I don\'t \n know'; // \n new line
let len = abc.length; // string length
abc.indexOf("lmno"); // position of 1st occurrence of string, -1 if doesn't contain
abc.lastIndexOf("lmno"); // position of last found occurrence
abc.slice(3, 6); // extracts "def", negative values count from behind
abc.replace("abc","123"); // find and replace, takes regular expressions
abc.toUpperCase(); // convert to upper case letters
abc.toLowerCase(); // convert to lower case letters
abc.concat(" ", str2); // abc + " " + str2
abc.charAt(2); // character at index 2: "c"
abc[2]; // character at index 2: "c", not fully implemented across all

// browsers, can't set the character using this notation, avoid
abc.charCodeAt(2); // character code at index: "c" -> 99
abc.split(","); // splitting a string on commas gives an array
abc.split(""); // splitting on every character
128.toString(16); // number to hex(16), octal (8) or binary (2)
abc.trim(); // removes whitespace from both ends of the string
abc.substring(4,6); // extracts the characters, between two specified indices

// (not including ending char): "ef"
abc.substr(4,6); // Extracts characters beginning at specified start position

// and through the specified number of characters: "efghij"

All string methods return a new value. They do not change the original variable.

Equality

• JavaScript's == and != are basically
broken: they do an implicit type
conversion before the comparison.

• Instead of fixing == and != , the
ECMAScript standard kept existing
behavior but added === and !==

Always use === and !== and don't use == or !=

Functions

• One way of defining a JavaScript function is with the following syntax:

function name() {
 statement;
 statement;
 ...
 return ...
}

JS

Function example

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

hello();
hello();

JS

The browser "executes" the function
definition first, but that just creates the
hello function (and it doesn't run the hello
function), similar to a variable declaration.

Console output:

Function example

hello();
hello();

function hello() {
 console.log('Hello!');
 console.log('Welcome to JavaScript');
}

JS

• This works because function declarations
are "hoisted" (mdn)

• Try not to rely on hoisting when coding. It
gets bad.

Console output:

JavaScript Hoisting refers to the process whereby the
interpreter appears to move the declaration of

functions, variables or classes to the top of their scope,
prior to execution of the code.

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html
http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html

Variable Hoisting

• Do you know what value will be printed in console if the following is
executed as a JavaScript program?

• Why undefined? Recall that undefined is for a variables that has been
declared but has not yet been assigned a value

console.log(foo);
var foo = 10;

JS

var foo; // foo is hoisted
console.log(foo);
foo = 10; JS

// undefined

is actually interpreted like this:

Variable Hoisting

• Do you know what value will be alerted if the following is executed as
a JavaScript program?

var foo = 1;
function bar() {
 alert(foo); // undefined
 if (!foo) {
 var foo = 10;
 }
 alert(foo); // 10
}
bar();

JS
var foo = 1;
function bar() {
 var foo; // foo is hoisted
 alert(foo); // var has function scope
 if (!foo) {
 foo = 10;
 }
 alert(foo);
}
bar();

JS

Variable Hoisting

• Do you know what value will be alerted if the following is executed as
a JavaScript program?

var foo = 1;
function bar() {
 alert(foo); // 1
 if (!foo) {
 let foo = 10;
 }
 alert(foo); // 1
}
bar();

JS

• Let has block scope is not hoisted outside of its block
• foo has the value of 1 inside function (from the global foo

assignment)
• Condition within the if statement is true, foo is assigned

the value 10 within the block
• Outside the if statement block, foo maintains its global

value

Arrays

• Arrays are Object types used to create lists of data.

o0-based indexing

oMutable

oCan check size via length property (not function)

// Creates an empty list
let list = [];
let groceries = ['milk', 'cocoa puffs'];
groceries[1] = 'kix';

JS

Arrays – Iterating through array

• You can use the familiar for-loop to iterate through a list:

• Or use a for-each loop via for...of (mdn):
(intuition: for each item of the groceries list)

let groceries = ['milk', 'cocoa puffs', 'tea'];
for (let i = 0; i < groceries.length; i++) {
 console.log(groceries[i]);
}

JS

let groceries = ['milk', 'cocoa puffs', 'tea'];
for (let item of groceries) {
 console.log(item);
}

JS

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

let arr = [5,10,15];
let len = arr.length; // array length: 3
arr[1]; // second element of the array (index starts at 0): 10
arr.push(1); // adds new item(s) to the end: [5,10,15,1]
arr.push(2,3); // [5,10,15,1,2,3]
arr.pop(); // removes last item and returns it’s value, [5,10,15,1,2]
arr.shift(); // removes first element and returns it’s value, [10,15,1,2]
arr.unshift(0); // adds new item(s) to beginning, [0,10,15,1,2]
arr.reverse(); // reverses the array in place, [2,1,15,10,0]
arr.concat([9,8]); // merges 2 or more arrays.Arrays unmodified. Returns new array: [2,1,15,10,0,9,8]
arr.slice(2,4); // returns a copy of a portion of an array into a new array: [15,10]
arr.find(function check(i) { return i >= 5; });

// returns the value of the first element in array that pass test: 15
arr.findIndex(function check(i) { return i >= 5; });

// returns the index of the first element in array that pass test: 2
arr.filter(function check(i) { return i >= 5; });

// creates new array with every element in array that pass test: [15,10,9,8]
arr.indexOf(0) // Search the array for an element and returns its position
arr.splice(start[, deleteCount[, item1[, item2[, ...]]]]);

// changes content by removing /or adding elements. start=Index at which to start
changing, deleteCount=number of array elements to remove, item1=element(s) to add
arr.splice(2,1,4,6); // removes one element from index 2 and adds 4,6 in the same index [2,1,4,6,10,0,9,8]
delete arr[1]; // delete but not removes the element: [2,,4,6,10,0,9,8]. Use splice instead.
[5,10,15,1,2,3].sort(); // sort the elements of array in Unicode code point order: [1,10,15,2,3,5]

[5,10,15,1,2,3].sort(function compFunc(a,b) { return a-b; });

// For first iteration a=5 and b=10. If compFunc(a,b) > 0 : sort b to an index
// lower than a, else(<0 or ===0) the two elements will not change indexes

Objects

• Every JavaScript object is a collection of property-value pairs.

• Objects can be initialized using new Object(), Object.create(),
or using the literal notation (initializer notation).

• An object initializer is a comma-delimited list of zero or more pairs of
property names and associated values of an object, enclosed in curly
braces {} as shown below:

// Creates an empty object
const prices = {};
// Non empty object
const scores = { 'peach': 100, 'mario': 88, 'luigi': 91 };

JS

Objects literal notation

• There are two ways to access the value of a property:

1. objectName[property] Ex: console.log(scores['peach']); // 100

2. objectName.property (for string keys) Ex: console.log(scores.peach);

// Creates an empty object
const prices = {};
// Non empty object
const scores = { 'peach': 100, 'mario': 88, 'luigi': 91 };

JS

Objects – Adding property

• To add a property to an object, name the property and give it a value:

const scores = { peach: 100, mario: 88, luigi: 91 };
scores.toad = 72;
let name = 'super';
scores[name] = 102;
console.log(scores);

JS

Objects – Deleting property

• To remove a property to an object, use delete:

const scores = { peach: 100, mario: 88, luigi: 91 };
scores.toad = 72;
let name = 'super';
scores[name] = 102;
delete scores.peach;
console.log(scores);

JS

Objects – Iterating through object

• Iterate through a map using a for...in loop (mdn):
(intuition: for each key in the object)

for (key in object) {
 // … do something with object[key]
}

for (let name in scores) {
 console.log(name + ' got ' + scores[name]);
}

JS

You can't use for...in on lists; only on object types
You can't use for...of on objects; only on list types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in

Objects – How to transfer between client-
server?

• Strings are lightweight and therefore very useful when transporting data.

oConvert list (arrays) or objects to Strings

o JavaScript Object Notation (JSON) is a standard text-based format for representing
structured data based on JavaScript object syntax

• A JavaScript object can be easily converted to a JSON string using
JSON.stringify() function

• JSON string can easily converted to JavaScript object using JSON.parse()

const obj = {firstname : "Sam", lastname : "Shark", age : 41};
const jsonObj = JSON.stringify(obj);
console.log(jsonObj);

JS

Object to JSON – Examples

let contacts = {
 name :"Timothy",
 age : 35,
 address : {
 street : "1 Main St",
 city : "Montreal"
 },
 interests:["cooking", "biking"]
};

JSlet contacts = {};
contacts.name = "Timothy";
contacts.age = 35;
contacts.address = {};
contacts.address.street = "1 Main St";
contacts.address.city = "Montreal";
contacts.interests = [];
contacts.interests[0] = "cooking";
contacts.interests[1] = "biking";

jsonStr = JSON.stringify(contacts);

conObj = JSON.parse(jsonStr);

Create the whole JavaScript object once OR Create the JavaScript object as data become available

let contacts = {};
contacts["name"] = "Timothy";
contacts["age"] = 35;
contacts["address"] = {};
contacts["address"]["street"] = "1 Main St";
contacts["address"]["city"] = "Montreal";
contacts["interests"] = [];
contacts["interests"][0] = "cooking";
contacts["interests"][1] = "biking";

The
same

JSON.parse()

• When using the JSON.parse() on a JSON derived from an array, the
method will return a JavaScript array, instead of a JavaScript object.

• Date objects are not allowed in JSON. If you need to include a date,
write it as a string. You can convert it back into a date object later:

const text = '["Ford", "BMW", "Audi", "Fiat"]';
const obj = JSON.parse(text);
console.log(obj);

JS

var text = '{ "name":"John", "birth":"1986-12-14", "city":"New York"}';
var obj = JSON.parse(text);
obj.birth = new Date(obj.birth);

JS

JSON.parse()

• You can use the second parameter, of the JSON.parse() function,
called reviver.

• The reviver parameter is a function that checks each property, before
returning the value; we can use a function to process each value

var text = '{ "name":"John", "birth":"1986-12-14", "city":"New York"}';
var obj = JSON.parse(text, function (key, value) {
 if (key == "birth") {
 return new Date(value);
 } else {
 return value;
 }
});

JS

	Slide 1: Internet Technologies
	Slide 2: What we've learned so far
	Slide 3: What we've learned so far
	Slide 4: JavaScript
	Slide 5: ECMAScript
	Slide 6: Code in web pages
	Slide 7: console.log
	Slide 8: How does JavaScript get loaded?
	Slide 9: How does JavaScript get loaded?
	Slide 10: How does JavaScript get loaded?
	Slide 11: How does JavaScript get loaded?
	Slide 12: JavaScript execution
	Slide 13: Simple Example
	Slide 14: Simple Example
	Slide 15: Click "Console" tab
	Slide 16: Console
	Slide 17: alert() method
	Slide 18: Same as Java/C++/C-style languages
	Slide 19: Variables: var, let, cons
	Slide 20: What's a "block"?
	Slide 21: Variables best practices
	Slide 22: Types
	Slide 23: Boolean
	Slide 24: Numbers
	Slide 25: Strings
	Slide 26
	Slide 27: Equality
	Slide 28: Functions
	Slide 29: Function example
	Slide 30: Function example
	Slide 31: Variable Hoisting
	Slide 32: Variable Hoisting
	Slide 33: Variable Hoisting
	Slide 34: Arrays
	Slide 35: Arrays – Iterating through array
	Slide 36
	Slide 37: Objects
	Slide 38: Objects literal notation
	Slide 39: Objects – Adding property
	Slide 40: Objects – Deleting property
	Slide 41: Objects – Iterating through object
	Slide 43: Objects – How to transfer between client-server?
	Slide 45: Object to JSON – Examples
	Slide 46: JSON.parse()
	Slide 47: JSON.parse()

