
Chapter 2
Application Layer – Part B

Peer-to-Peer Applications

 Adapted from Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross

Addison-Wesley

Application Layer 2-2

Outline

2.6 P2P applications

 Introduction

 P2P Architectures

 P2P Protocols

 Case Study: BitTorrent

What is P2P?

 “the sharing of computer resources and services
by direct exchange of information”

Application Layer 2-3

What is P2P?

 “P2P is a class of applications that take advantage
of resources – storage, cycles, content, human
presence – available at the edges of the Internet.
Because accessing these decentralized resources
means operating in an environment of unstable
and unpredictable IP addresses P2P nodes must
operate outside the DNS system and have
significant, or total autonomy from central
servers”

Application Layer 2-4

What is P2P?

 “A distributed network architecture may be
called a P2P network if the participants share a
part of their own resources. These shared
resources are necessary to provide the service
offered by the network. The participants of such a
network are both resource providers and
resource consumers”

Application Layer 2-5

What is a peer?

 “…an entity with capabilities similar to
other entities in the system.”

Application Layer 2-6

Application Layer 2-7

P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers request service from
other peers, provide service
in return to other peers

 self scalability – new
peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses

 complex management

peer-peer

Application Layer 2-8

Client-server architecture

server:
 always-on host

 permanent IP address

 data centers for scaling

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate directly
with each other

client/server

P2P Network Characteristics

 Clients are also servers and routers
 Nodes contribute content, storage, memory, CPU

 Nodes are autonomous (no administrative authority)

 Network is dynamic: nodes enter and leave the network
“frequently”

 Nodes collaborate directly with each other (not through
well-known servers)

 Nodes have widely varying capabilities

Application Layer 2-9

P2P Goals and Benefits

 Efficient use of resources
 Unused bandwidth, storage, processing power at the “edge of the network”

 Scalability
 No central information, communication and computation bottleneck

 Aggregate resources grow naturally with utilization

 Reliability
 Replicas

 Geographic distribution

 No single point of failure

 Ease of administration
 Nodes self-organize

 Built-in fault tolerance, replication, and load balancing

 Increased autonomy

 Anonymity – Privacy
 not easy in a centralized system

 Dynamism
 highly dynamic environment

 ad-hoc communication and collaboration

Application Layer 2-10

P2P Applications

 File sharing (Napster, Gnutella, Kazaa, others?)

 Multiplayer games (Unreal Tournament, DOOM)

 Collaborative applications (ICQ, shared whiteboard)

 Distributed computation (Seti@home)

 Ad-hoc networks

Application Layer 2-11

Application Layer 2-12

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-13

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:

 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate

 min client download time: F/dmin

us

network

di

ui

F

Application Layer 2-14

File distribution time: P2P

 server transmission: must
upload at least one copy

 time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits

 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-15

Introduction to P2P

 Main operations in P2P systems
 Join the P2P overlay network

 Resource discovery

• Publish resources to be shared (optional)

• Discover resource

 Resource retrieval

Application Layer 16

17Application Layer

P2P protocols
 Distributed network architecture
 A virtual overlay network at the application layer

 Participants act as both a client and a server

P1

R1

R2 R3
P2

P1

P2

Physical Network

Overlay Network

Node: peers

Edge: TCP/UDP connection

2-17

P2P Operation

Application Layer 18

TCP/IP

P2P Substrate

Network

storage

Event

notification

Internet

self-organizing

overlay network

P2P application layer
?

P2P Architectures

 Three types of P2P systems
 Centralized

 Decentralized and unstructured

 Decentralized but structured

 Some P2P systems also adopt hybrid architecture
 Hybrid of centralized and decentralized (unstructured

or structured)

Application Layer 19

Centralized index

file transfer is decentralized,
but locating content is highly
centralized

original “Napster” design

1) when peer connects, it
informs central server:
 IP address

 content

2) Alice queries for “Hey
Jude”

3) Alice requests file from Bob

Application Layer 2-20

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

Centralized

 Benefits:

 Low per-node state

 Limited bandwidth usage

 Short location time

 High success rate

 Fault tolerant

 Drawbacks:

 Single point of failure

 Limited scale

 Possibly unbalanced load
 copyright infringement

Application Layer 2-21

Bob Alice

JaneJudy

Napster
 program for sharing files over the Internet

 a “disruptive” application/technology?

 history:

 5/99: Shawn Fanning (freshman, Northeasten U.) founds Napster Online
music service

 12/99: first lawsuit

 3/00: 25% UWisc traffic Napster

 2000: est. 60M users

 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

 7/01: # simultaneous online users:

Napster 160K,
Gnutella: 40K,
Morpheus: 300K

Application Layer 2-22

Napster: how does it work

Application-level, client-server protocol over point-to-point TCP

Four steps:

 Connect to Napster server

 Upload your list of files (push) to server.

 Give server keywords to search the full list with.

 Select “best” of correct answers. (pings)

Application Layer 2-23

Napster

Application Layer 2-24

napster.com

users

File list is

uploaded
1.

Napster

Application Layer 2-25

napster.com

user

Request
and

results

User

requests

search at

server.

2.

Napster

Application Layer 2-26

napster.com

user

pings
pings

User pings

hosts that

apparently

have data.

Looks for best

transfer rate.

3.

Napster

Application Layer 2-27

napster.com

user

Retrieves
file

User retrieves

file

4.

Decentralized and Unstructured

P2P
 Floods query messages to peers to search for shared

objects
 No central server, no publication of shared objects

 Limited-scope flooding to reduce flooding messages

 A query hit message is returned along the reverse path
back to the inquirer

Application Layer 28

Query

Query

QueryQuery

Query

Query Hit

Query Hit

Query Hit

Download

Example: Gnutella

Decentralized and Unstructured

P2P
 Join procedure
 A newcomer sends a join message to a peer already on

the overlay.

 The existing peer replies its identity as well as a list of
its neighbors

• May also forward the join message to its neighbors

 Upon receiving join reply messages, the newcomer
knows more peers on the overlay.

Application Layer 29

Decentralized and Unstructured

P2P
 Advantages

 Fully distributed

 Reliable, fault-tolerant

 No single point of failure

 Disadvantages

 Excessive query traffic make it not scalable

 May fail to find content that is actually in the
system

 Super peer may become overloaded or been
attacked

Application Layer 30

Gnutella: Query flooding

Application Layer 2-31

Query

QueryHit

Query

QueryHit

File transfer:

HTTP
 Query message
sent over existing TCP
connections

 peers forward
Query message

 QueryHit
sent over
reverse
path

Gnutella: Peer joining

1. joining peer Alice must find another peer in Gnutella
network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob forwards
Ping message to his overlay neighbors (who then
forward to their neighbors….)

 peers receiving Ping message respond to Alice with
Pong message

4. Alice receives many Pong messages, and can then setup
additional TCP connections

Application Layer 2-32

Gnutella

Searching by flooding:

 If you don’t have the file you
want, query 7 of your neighbors.

 If they don’t have it, they contact
7 of their neighbors, for a
maximum hop count of 10.

 Requests are flooded, but there
is no tree structure.

 No looping but packets may be
received twice.

 Reverse path forwarding

Application Layer 2-33
* Figure from http://computer.howstuffworks.com/file-sharing.htm

Gnutella

Application Layer 2-34

fool.* ?

TTL = 2

Gnutella

Application Layer 2-35

TTL = 1

TTL = 1

IPX:fool.her

fool.herX

TTL = 1

Gnutella

Application Layer 2-36

fool.you

fool.me
Y

IPY:fool.me
fool.you

Gnutella

Application Layer 2-37

IPY:fool.me
fool.you

Gnutella: strengths and weaknesses

 pros:

flexibility in query processing

complete decentralization

simplicity

fault tolerance/self-organization

 cons:

severe scalability problems

susceptible to attacks

 Pure P2P system

Application Layer 2-38

Gnutella: initial problems and fixes

 2000: avg size of reachable network only 400-800 hosts.
Why so small?
 modem users: not enough bandwidth to provide search routing

capabilities: routing black holes

 Fix: create peer hierarchy based on capabilities
 previously: all peers identical, most modem black holes

 preferential connection:

• favors routing to well-connected peers

• favors reply to clients that themselves serve large number
of files: prevent freeloading

Application Layer 2-39

Decentralized and Unstructured

P2P
 Hierarchical overlay with super peers
 Flooding is apparently not scalable

 FastTrack adopts a hierarchical overlay

 A super peer acts as a local directory database which
stores the indexes of objects shared by ordinary peers

 Two-level hierarchical overlay

• The lower level adopts the central

server approach

• The upper level (super peers) adopts the

decentralized and unstructured approach.

Application Layer 40

query reply

Hierarchical Overlay

 between centralized index,
query flooding approaches

 each peer is either a super
node or assigned to a super
node
 TCP connection between peer

and its super node.

 TCP connections between some
pairs of super nodes.

 Super node tracks content in
its children

Application Layer 2-41

ordinary peer

group-leader peer

neighoring relationships

in overlay network

Kazaa (Fasttrack network)

 Hybrid of centralized Napster and decentralized Gnutella
 hybrid P2P system

 Super-peers act as local search hubs
 Each super-peer is similar to a Napster server for a small portion

of the network

 Super-peers are automatically chosen by the system based on
their capacities (storage, bandwidth, etc.) and availability
(connection time)

 Users upload their list of files to a super-peer

 Super-peers periodically exchange file lists

 You send queries to a super-peer for files of interest

Application Layer 2-42

Unstructured vs Structured P2P

 The systems we described do not offer any
guarantees about their performance (or even
correctness)

 Structured P2P

 Scalable guarantees on numbers of hops to answer a query

 Maintain all other P2P properties (load balance, self-
organization, dynamic nature)

 Approach: Distributed Hash Tables (DHT)

Application Layer 2-43

Decentralized but Structured

 Combine the distributed directory service with
an efficient query routing scheme

 Key ideas
 Distributed directory service

• Hash function maps peers and objects into
the same address space

 Efficient query routing

• Peers are organized into a structured
overlay based on their positions in the
address space

Application Layer 44

Distributed Hash Table (DHT)

 DHT: a distributed P2P database

 database has (key, value) pairs; examples:
 key: ss number; value: human name

 key: movie title; value: IP address

 Distribute the (key, value) pairs over the
(millions of peers)

 a peer queries DHT with key
 DHT returns values that match the key

 peers can also insert (key, value) pairs

Application Layer 2-45

 Distributed version of a hash table data structure

 Stores (key, value) pairs
 The key is like a filename

 The value can be file contents, or pointer to location

 Goal: Efficiently insert/lookup/delete (key, value) pairs

 Each peer stores a subset of (key, value) pairs in the
system

 Core operation: Find node responsible for a key
 Map key to node

 Efficiently route insert/lookup/delete request to this node

 Allow for frequent node arrivals/departures

Application Layer 2-46

Distributed Hash Table (DHT)

DHT Desirable Properties

 Keys should mapped evenly to all nodes in the
network (load balance)

 Each node should maintain information about
only a few other nodes (scalability, low update
cost)

 Messages should be routed to a node efficiently
(small number of hops)

 Node arrival/departures should only affect a few
nodes

Application Layer 2-47

Basic Approach

In all approaches:

 keys are associated with globally unique IDs
 integers of size m (for large m)

 key ID space (search space) is uniformly populated -
mapping of keys to IDs using (consistent) hashing

 a node is responsible for indexing all the keys in a certain
subspace (zone) of the ID space

 nodes have only partial knowledge of other node’s
responsibilities

Application Layer 2-48

Decentralized but Structured

 Operations overview
 Each peer generates its ID by a hash function

 Each peer generates IDs of objects to be shared by the
same or another hash function

 For each object, the peer sends a register message to
the node that has the node ID same as the object’s ID.

 To query an object, a peer uses the hash function to
generate the object ID and sends the query message to
the node that hosts the object’s ID.

Application Layer 49

Q: how to assign keys to peers?

 central issue:
 assigning (key, value) pairs to peers.

 basic idea:
 convert each key to an integer

 Assign integer to each peer

 put (key,value) pair in the peer that is closest
to the key

Application Layer 2-50

DHT identifiers

 assign integer identifier to each peer in range
[0,2n-1] for some n.
 each identifier represented by n bits.

 require each key to be an integer in same range

 to get integer key, hash original key
 e.g., key = hash(“Led Zeppelin IV”)

 this is why its is referred to as a distributed “hash”
table

Application Layer 2-51

Assign keys to peers

 rule: assign key to the peer that has the
closest ID.

 convention in lecture: closest is the
immediate successor of the key.

 e.g., n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

Application Layer 2-52

1

3

4

5

8
10

12

15

Circular DHT (1)

 each peer only aware of immediate successor and
predecessor.

 “overlay network”

Application Layer 2-53

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible

for key 1110 ?
I am

O(N) messages

on avgerage to resolve

query, when there

are N peers

1110

1110

1110

1110

1110

1110

Define closest

as closest

successor

Application 2-54

Circular DHT (1)

Application Layer 2-54

Circular DHT with shortcuts

 each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 reduced from 6 to 2 messages.

 possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

Application Layer 2-55

1

3

4

5

8
10

12

15

Who’s responsible

for key 1110?

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.

what if peer 13 wants to join?

Application Layer 2-56

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Object Distribution

Application Layer 57

Consistent hashing

[Karger et al. ‘97]

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: node with

numerically closest nodeId

maintains object

objid

nodeids

02128 - 1

Object Insertion/Lookup

Application Layer 58

X

Route(X)

Msg with key X

is routed to live

node with

nodeId closest

to X

Problem:

complete

routing table

not feasible

O2128 - 1

Routing

Integrity of overlay:

 guaranteed unless L/2 simultaneous failures of
nodes with adjacent nodeIds

Number of routing hops:

 No failures: < log16 N expected, 128/b + 1 max

 During failure recovery:
 O(N) worst case, average case much better

Application Layer 59

Routing Procedure

Application Layer 60

if (destination is within range of our leaf set)

forward to numerically closest member

else

let l = length of shared prefix

let d = value of l-th digit in D’s address

if (Rl
d exists)

forward to Rl
d

else

forward to a known node that

(a) shares at least as long a prefix

(b) is numerically closer than this node

Routing

Properties
 log16 N steps
 O(log N) state

Application Layer 61

d46a1c

locate(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

DHT Routing Protocols

 DHT is a generic interface

 There are several implementations of this interface

 Chord [MIT]

 Pastry [Microsoft Research UK, Rice University]

 Tapestry [UC Berkeley]

 Content Addressable Network (CAN) [UC Berkeley]

 SkipNet [Microsoft Research US, Univ. of Washington]

 Kademlia [New York University]

 Viceroy [Israel, UC Berkeley]

 P-Grid [EPFL Switzerland]

 Freenet [Ian Clarke]

Application Layer 2-62

Decentralized but Structured

 Message routing (use Chord as an example)
 Key idea: have each peer maintain a specially designed

routing table such that every peer could forward the
arriving message to a neighboring peer with node ID that
is further closer to the destination.

 Consider a 10-node Chord overlay in a 6-bit address
space

 Chord views its address space as a one-dimensional
circular space such that peers in the space form a ring
overlay.

Application Layer 63

Message Routing in Chord

 The routing table in Chord is called a finger table.

 For an m-bit address space, the finger table of a
node with ID=x consists of at most m entries and
the i-th entry points to the first node with ID
following the ID of x+2i-1 modulo 2m, for 1≤i≤m.

Application Layer 64

Finger Table of Chord
 Finger table of node N8, where m =6.

Application Layer 65

N8

N15

N20

N30
N38

N42

N47

N51

N56 +1

+2

+4

+8

+16+32

Finger table

N8+1 N15

N8+2 N15

N8+4 N15

N8+8 N20

N8+16 N30

N8+32 N42

N1

Routing a Query Message
 Routing a query message for object 54 from N8

Application Layer 66

N1

N8

N15

N20

N30
N38

N42

N47

N51

N56

Finger table

N8+1 N15

N8+2 N15

N8+4 N15

N8+8 N20

N8+16 N30

N8+32 N42

Finger table

N42+1 N47

N42+2 N47

N42+4 N47

N42+8 N51

N42+16 N1

N42+32 N15

Finger table

N51+1 N56

N51+2 N56

N51+4 N56

N51+8 N1

N51+16 N8

N51+32 N20

K54

lookup(54)

Leaf Sets

Application Layer 2-67

Each node maintains IP addresses of the

nodes with the L numerically closest larger

and smaller nodeIds, respectively.

• routing efficiency/robustness

• fault detection (keep-alive)

• application-specific local coordination

Node Addition

Application Layer 68

d46a1c d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

addnode(d46a1c)

Node Departure (Failure)

Leaf set members exchange keep-alive
messages

 Leaf set repair (eager): request set from
farthest live node in set

 Routing table repair (lazy): get table from
peers in the same row, then higher rows

Application Layer 69

Application Layer 76

Performance Issues of P2P

Applications
 Free Riding

 Flash Crowd

 Topology Awareness

 NAT Traversal

 Churn

 Security

 Copyright Infringement

Free Riding
 Scalability of P2P systems relies on the contribution

from peers
 free rider: a peer only consumes but contributes little or

no resources

 85% of peers share no files in Gnutella in 2005

 A common solution is to implement some incentive
mechanisms.
 tit-for-tat in BitTorrent.

 reward-based

 credit-based

Application Layer 77

Flash Crowd

 Definition: a sudden, unanticipated growth in the
demand of a particular object
 e.g., a new release of a DVD video or mp3 file

 Issues
 A sudden large amount of query messages

 To find and download the object within a short time
period

 Solutions
 Cache, duplicating popular objects

Application Layer 78

Topology Awareness

 A virtual link could be
 a long end-to-end connection across continents

 a short one within a local area network

 How to avoid serious topology mismatch

 Solutions
 Route-proximity or Neighbor-proximity

 Routing or neighbor selection based on RTT
measurement, preference of routing domain or ISP, or
geographical information.

Application Layer 79

NAT Traversal

 Basic requirement for P2P systems

 If both peers are behind NAT devices, they
cannot connect to each other without help
from other peers or STUN servers

 Solutions

 In most cases, NAT traversal is solved by relay
peers or super peers that have public IP
addresses

Application Layer 80

Churn

 Churn refers to the phenomenon that peers
dynamically join and leave the system at will.
 high churn rate seriously affects the stability and scalability

of a P2P system.

 e.g., a high churn rate may cause a tremendous overlay
maintenance overhead and dramatic routing performance
degradation in DHT-based system

 Solutions
 Avoid rigid structure or relation among peers

 Peers maintain a list of potential neighbors for quick and
dynamic neighbor replacement

Application Layer 81

Security

 Issues
 P2P programs with back hole (Trojan Horse), spurious

content, leaking of files not to be shared.

 Solutions to content pollution
 Protect the content with message digest such as MD5

• In BitTorrent, the MD5 digest of each piece of a shared
file is stored in the metadata file

 Peer reputation system

 Object reputation system

Application Layer 82

Copyright Infringement

 Sharing copyrighted objects through P2P systems
is a serious problem which hinders the promotion
and usage of P2P systems.

 Not only P2P users are responsible for copyright
infringement, so are the companies that host P2P
applications
 Especially in the case where P2P systems will not be

able to exist without their servers (e.g., Napster)

Application Layer 83

P2P file distribution: BitTorrent

Application Layer 2-84

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list

of peers

trading
chunks

peer

 BitTorrent (BT) was originally designed by Bram Cohen in 2001

 file divided into 256KB chunks.

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

Application Layer 2-85

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

Application Layer 2-86

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

BitTorrent: tit-for-tat

Application Layer 2-87

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

BT Operation Overview

Application Layer 88

Web page with Link

to .torrent

Web Server

Tracker

Seeder

Source

publish

Downloading peer

Downloading peer

1. get .torrent
2. get

announce

3. response peer

list

4. get piece

5. get piece

BT Architecture

 Hybrid
 Centralized: tracker plays the role of local central

directory server for a file

 Decentralized: peer discovers which piece to
download from which peer/seeder in a distributed
manner

 New development: distributed tracker based on DHT
(no centralized tracker)

Application Layer 89

Piece Selection

 Random first piece selection
 For the first few pieces, the client just randomly selects a

piece to download.

 Rarest first policy
 Selects the most scarce piece to download first

 End-game mode
 To speed up the completion of a file download at the end,

a peer with only a few pieces missing will send requests
for all missing pieces to all the peers

Application Layer 90

Peer Selection
 Choking/unchoking

 Choking refers to a temporal refusal to upload to a peer.

 At the beginning, all peers are chocked

 Tit-for-tat algorithm selects a fixed number of peers from which the
peer downloaded most to unchoke

 Optimistic unchoking
 new peer needs to move its first step when initially joined the system

 select one peer at random

 Anti-snubbing
 If a peer is choked by all of its peers (snubbed), it is better to run

optimistic unchoking more often to explore more peers that are willing
to cooperate.

Application Layer 91

