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1.1. IntroductionIntroduction

2.2. Current Issues:  Neural CodingCurrent Issues:  Neural Coding

Koch, C. (2003), The Quest for Consciousness: A Neurobiological Approach, Roberts & Co Publishers.

What is What is NeuroinformaticsNeuroinformatics//
Computational Neuroscience?Computational Neuroscience?

Challenge:  Understanding of the human nervous 
system (the brain)

It has been proved very difficult to build machines 
with cognitive capabilities matching our own

Brain abilities:
perception
decision making 
cognition 
reasoning  

Learning from the brain and learning about 
the brain by studying information processing 
in the brain

What is What is NeuroinformaticsNeuroinformatics//
Computational Neuroscience?Computational Neuroscience?

Disciplines involved:
– Neuroscience-related life sciences: neuroscience, 

neurobiology, biology, psychology, linguistics
– Information sciences and related:             

computer science, mathematics, statistics, physics 
and electronic engineering

– Humanities:
philosophy

Neuroinformatics/Computational Neuroscience:
INTERDISCIPLINARY

What is What is NeuroinformaticsNeuroinformatics//
Computational Neuroscience?Computational Neuroscience?

What is What is NeuroinformaticsNeuroinformatics//
Computational Neuroscience?Computational Neuroscience?
Neuroinformatics/Computational Neuroscience
is concerned with:

developing and applying computational methods
to the study of brain and behaviour;

applying advanced IT methods to deal with the huge 
quantity and great complexity of neuroscientific data;

exploiting our insights into the principles underlying 
brain function to develop new IT technologies.
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Developing and applying computational methods 
to the study of brain and behaviour:

• How?  By building computational quantitative models to 

model what the brain does in terms of computations; thus 

we will try and understand the brain as a computing device

• The lecture will introduce the basic concepts of this area and

concentrate on the current issue of neural coding

Developing and applying computational methods to the 
study of brain and behaviour:

How?  By building computational quantitative models to model 
what the brain does in terms of computations; thus we will try 
and understand the brain as a computing device

Why do we need models?Why do we need models?

• Force one to make assumptions explicit; cannot get very far with 
hypotheses expressed in intuitive terms. e.g., ``visual experience 
affects visual development'' 

• Enables many “virtual” experiments to be done 
⇒ can pinpoint the one that is most crucial

• Can lead to unexpected predictions 

• Often much quicker/easier to try out ideas and so it can guide 
potential experiments

Who could attend this lecture Who could attend this lecture 
Computer Scientists who want to learn about the 
brain and modelling it: no prior neuroscience 
background required

Neuroscientists who want a computational 
perspective: focus on representations and algorithms 
rather than anatomy and physiology; good to have a 
close contact with them so as to build good models

Cognitive scientists who want to know more about 
brains as information processing devices:  taking the 
“brain as computer” metaphor seriously, requires 
learning as much as possible about both

SourcesSources
Typical journals:
Neural Computation
Journal of Computational Neuroscience 
Biological Cybernetics
and occasional articles in many other journals including:
Neural Networks
IEEE Transactions on Neural Networks

Typical Conferences:
CNS (Computational Neuroscience Meeting)
NIPS (Neural Information Processing Systems)
NCWS (Neural Coding Workshop)
NCPW (Neural Computation and Psychology Workshop)
Neurosciences Meeting

Understanding Cognition: A Multilevel Understanding Cognition: A Multilevel 
ApproachApproach

computational description 
of cognitive function 
algorithmic description, 
probably involving 
multiple, interacting 
computational modules 
neurally-relevant 
implementation with 
artificial neural networks 
implementation mapped 
directly to the biological 
neural systems.

INVESTIGATE ALL 
LEVELS

• Need to understand the 
behaviours we are 
capable of (psychologists)

• Molecular Biology
elucidates neuronal
functioning at molecular
level

• In this lecture:  
Neuronal level
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Major functional computing 
components of the brain are: 

1. synapses: points of connection 
between two neurons

2. microcircuits: interactions between 
nearby synapses onto a single neuron 

3. neurons: the fundamental computing 
units of the nervous system 

4. local circuits: small networks of 
nearby neurons

Genetics and molecular biology underlie 
these components. Cognitive function 
results from the feed forward and feedback 
interaction of local circuits to and form 
functional modules, systems and pathways. 

populations
of neurons

computational
model

neurons

molecules ion channels

behaviour

signals

Neurobiological Modelling

spiking neuron models

BOTTOM UP

TOP DOWN

Schematic diagram of biological neurons

*  the dendrites and the axon make 
synaptic contacts with dendrites of other 
neurons
* synapse is directional
* Information enters the neuron at the 
synapses on the dendrites
Transmission of signals
1. Chemical known as neurotransmitter 
released from synaptic vesicles
2. Causes an electrical charge (action 
potential) which can raise or lower its 
potential depending on whether the 
synapse is excitatory or inhibitory
3. If the total potential reaches a 
threshold, an action potential or spike is 
transmitted down the axon (starting at the 
axon hillock)
4. After firing, the cell has to wait for a 
refractory period before it can fire again.

Levels of Single Neuron ModellingLevels of Single Neuron Modelling
Many different types of single neuron models: from 
very abstract and simple to very realistic and 
complicated:
– Binary threshold unit (McCulloch and Pitts) 
– Continuous unit 
– Integrate-and-fire (continuous in time) 
– Spiking 
– A few compartments 
– Many compartments 
– Individual channels 
– Detailed model of channel dynamics 
– etc
All models must make simplifications to be useful
Which one to use, is dependent on the purpose

Simple Models: Integrate and Fire neuron models

• Simplified neuron models where the biophysical mechanisms are 
not explicitly modelled (like in the Hodgkin & Huxley, 1952 model)

- simulations can be accelerated

Integrate and Fire models

* An action potential (AP) occurs whenever the membrane 
potential of the model neuron exceeds a threshold value

* After the action potential, the membrane potential 
resets to the reset potential, below the threshold.

)()()( tIRtVE
dt

tdV
emLm +−=τBasic equation for the leaky 

integrate-and-fire model:

thm VtV =)(
Model assumptions – generation of spikes:

and reset the membrane potential threset VV <

Leaky integrate-and-fire model driven by a time-varying current

Fire a spike if:
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Schematic Diagram: Leaky Integrate-and-fire Model
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tdV
emLm +−=τ

The The Temporal NoisyTemporal Noisy--Leaky IntegratorLeaky Integrator neuron modelneuron model

Main differences from other models:
* Separation of dendritic and somatic integration 
*  Modelling of the temporal summation of PSPs in the dendrites
*  Use of stochastic synapses (represented by the pRAMs)
*  Hardware realisability
*  Difference in the way inhibition is modelled

Christodoulou, C., Bugmann, G. and Clarkson, T. G. (2002), Neural Networks, 15, 891-908.
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Neural CodingNeural Coding

Neural coding: firing rates depend on stimulusNeural coding: firing rates depend on stimulus

Visual cortical neuron: variation with orientation of stimulus
(unconscious animal)

Spike trains as a function of
bar orientation
Hubel DH & Wiesel TN (1962). Journal of Physiology 160:106-154.
Hubel, DH & Weisel, TN (1968). Journal of Physiology 195:215-243.

Gaussian tuning curve

Neural coding: firing rates depend on stimulusNeural coding: firing rates depend on stimulus

Orientation and Direction Selectivity

www.shadlen.org/~mike/movies/

1. Direction Selective.mov
2. Orientation Selective.mov

Motor cortical neuron:  variation with direction of movement
(conscious animal)

Neural coding: firing rates depend on stimulusNeural coding: firing rates depend on stimulus

Spike trains as a function of
hand reaching direction

Cosine tuning curve

Recording the Output of a NeuronRecording the Output of a Neuron

Intracellular
Recording
at the Soma

Extracellular
Recording
near the Soma

Intracellular
Recording
at the Axon

Single neuron activity

If you measure the membrane potential of a neuron and print it out 
on the screen, it  looks like:

spike
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Abstraction
So we can forget all sub-threshold activity and concentrate on spikes 
(action potentials), which are the signals sent to other neurons 

Spikes

• Only spikes are important since other neurons 
receive them (signals)

• Neurons communicate with spikes 

• Information is coded by spikes

Firing RateFiring Rate
Since the rate of spiking indicates synaptic activity, one could
use the firing rate as the information in the network

However APs are all-or-nothing and spike timing is stochastic

With identical input 
for the identical neuron  

spike patterns are similar, but not identical

Single spiking time is meaningless
To extract useful information, we have to average

to obtain the firing rate r

for a group of neurons in a local circuit where 
neuron codes the same information  
over a time window

Local circuit

= 

Time window = 1 sec

r  =

= 6 Hz

Computing the Firing Rate of a NeuronComputing the Firing Rate of a Neuron

Extracellular spike train

Rectangular Window
(100 ms)

Sliding Window
(100 ms)

Gaussian Window
(σ = 100 ms)

Causal Window
(1/α = 100 ms)

Rate Codes
vs

Spike (or temporal) codes
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Rate Codes – Rate as a spike count

stim
T

nsp

Rate
T

Tttn sp );( +
=ν

Rate defined as temporal average

Rate Codes

Rate defined as average over stimulus repetitions
Peri-Stimulus Time Histogram

PSTH(t)

K=500 trials

Stim(t) t

tK
tttntPSTH

∆
∆+

=
);()(

Rate Codes:
population activity - rate defined by population average

I(t)

?

population dynamics? t

t

tN
tttntA

∆
∆+

=
);()(population

activity

Spike Codes:
temporal codes

t

Time to first spike after input

Phase with respect to oscillation

correlations

Reverse Correlations

fluctuating input

I(t)

• Note the time course of the stimulus in a time window before a spike
• Average the results over several spikes --> typical time course of a 
stimulus just before a spike
REVERSE CORRELATIONS

Averaging of the input under the condition of an identical response (spike)
Spike-triggered average

Reverse-Correlation Experiments (simulations)

after  1000 spikes

)(tI∆

after  25000 spikes

Results of reverse correlation
i.e. the typical time course of the
stimulus which has triggered the
spike can be interpreted as the
“meaning” of a single spike 
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Examples of reverse correlationExamples of reverse correlation

Electric sensory neuron in electric fish:
Stimulus = fluctuating potential (generates electric field)

Motion-sensitive neuron in blowfly visual system:
Stimulus (t) = velocity of moving pattern in visual field

Examples of reverse correlationExamples of reverse correlation

Spike Triggered Average

2-Spike Triggered Average
(10 ms separation)

2-Spike Triggered Average (5 ms)

Stimulus Reconstruction

fluctuating input

I(t)

Stimulus Reconstruction

Bialek et al

TYPES OF SPIKE TRAINS OBSERVED IN TYPES OF SPIKE TRAINS OBSERVED IN 
NEURONSNEURONS

Completely Random:  
Recorded in the visual cortex and the extrastriate cortex of cats

Bursty:  
Definition:  spike trains characterised by clusters of short intervals 
interspersed between irregular long intervals
Recorded in the ventrolateral nucleus of the thalamus of a sleeping 
cat; in the motor cortex of a conscious cat; in rat hippocampal
pyramidal cells
Importance: burst arrival time might play a role in temporal coding; 
recorded bursts in a locust contribute to the generation of flight motor 
pattern

Regular:  
At extremely high firing rates approaching 1/(refractory period)

Characterisation of stochastic neuronal firing Characterisation of stochastic neuronal firing 
properties and analysis of spike trainsproperties and analysis of spike trains

INTERSPIKE INTERVAL (ISI) DISTRIBUTION

Example of a spontaneous 
neuron discharge obeying
a Poisson process

ISI histogram distribution
using bins of ∆t = 10ms wide
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Modelling spike trainsModelling spike trains

Point process: stochastic process that generates a 
sequence of events (in general, P(event)) can depend 
of the entire history of the preceding events

Renewal process: point process, where P(event) 
depends only on the immediately preceding event 
(intervals of successive events are independent

Poisson process: point process, where P(event)
is independent of preceding events.

Poisson distributionPoisson distribution

rT
n

T n
rTnP −= e

!
)()(

Probability of n spikes in interval of duration T:

rTn =Mean count:

variance: nrTnnn ==−= 22 )(σ

large      : GaussianrT

Homogeneous Poisson process:    r = rate = prob of firing per unit time,
i.e.,           prob of spike in interval =∆tr )0(],[ →∆∆+ tttt

Fano factorFano factor

1

)( 2

=

−
=

F
n
nnF spike count variance / mean spike count

for stationary Poisson process

Poisson processPoisson process:  :  interspikeinterspike interval distributioninterval distribution

rtrtP −= e)(

r
t 1

=

2
2

2 1)( t
r

tt ==−

Exponential distribution: (like radioactive Decay)

Mean Interspike Interval (ISI):

variance:

ISI distribution to a real neuron    ISI distribution to a leaky I&F 
model with random inputs and 
a refractory period

Characterisation of stochastic neuronal firing Characterisation of stochastic neuronal firing 
propertiesproperties and analysis of spike trainsand analysis of spike trains

Coefficient of Variation (CV) of Interspike Intervals (ISIs):  measure of spike train
irregularity defined as the standard deviation (σ∆t) divided by the mean ISI (∆tM):

CV = σ∆t / ∆tM

**   For a random pure Poisson process CV = 1 and the ISI histogram distribution 
follows an exponential shape. 

**   The CV is a measure of the relative spread of the distribution and its 
deviation from exponentiality.

**   Poisson-type firing is verified if the ISIs are both:
(i)  exponentially distributed and 
(ii) independent

OTHER ISI DISTRIBUTION SHAPESOTHER ISI DISTRIBUTION SHAPES

(i) γ (gamma) Distribution:
Denotes that spike trains lie somewhere between randomness and 
regularity

(ii)  Distribution with a sharp leading hump with long but flat & low tail:
Indicates bursting behaviour

(iii) Bimodal Distribution
Reflects regular burst discharges

(iv) Multimodal Distribution
Needs to be assessed with other characteristics
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Information CodingInformation Coding
Action Potential Timing vs. FrequencyAction Potential Timing vs. Frequency

How is information represented in the nervous system?

1. Several possible “codes” have been proposed over the decades 
rate codes (continuous) 
temporal or “correlation” codes (discrete)
population codes (can be rate- or temporal-based) 

2.  Temporal codes were the earliest proposed information representation 
fell out of favour as investigators focused on the amount of noise 
seemingly inherent in the brain - rate codes which could average out 
noise became vogue 

3. Only in the last 10 years or so has temporal coding experienced a 
resurgence in popularity as we get a handle on the precision of 
individual neurons even in the presence of noise, as well as the
seeming importance of neuronal synchronization and oscillations 

4.  Most likely, the Central Nervous System is as efficient as possible, 
taking  advantage of multiple coding schemes to multiplex information 

Information CodingInformation Coding
Temporal CodesTemporal Codes

More complex but more efficient as opposed to rate codes

As opposed to rate codes where the only variable of interest 
is the firing rate of a given neuron, a more complex set are 
the general group of temporal codes or correlation codes 

Spike doublets, triplets, and higher order combinations can 
carry information in the precise timing of their occurrences -
presumably some delay-mechanism in the postsynaptic 
neuron can do the decoding

Population-based temporal codes draw upon the specific 
timings of several streams of inputs (e.g. synchronous input) 
- presumably coincidence detection by the postsynaptic 
neuron performs the decoding

Depends critically on the precision of cortical neurons in 
producing well-timed spikes despite a multitude of noisy 
contamination

Neural CodeNeural Code and and identification of the determinants identification of the determinants 
of the highlyof the highly variable firing observed in neuronsvariable firing observed in neurons

The `neural code` controversy - revitalised by Softky & Koch,1993 (S&K93):

Showed that firing in cortical neurons at high firing rates (up to 200Hz) 
when repeatedly stimulated with exactly the same visual stimulus is 
nearly consistent with a completely random process (Poisson-type).

ISI distribution
CVs for many neurons

Neural CodeNeural Code andand identification of the determinants of identification of the determinants of 
the highlythe highly variable firing observed in neuronsvariable firing observed in neurons

*   Using a leaky-integrator type neuron, they failed to reproduce the high
variability observed in cortical cells at high firing rates.

*    High firing variability could only be obtained at low firing rates or at high 
firing rates with unrealistically short membrane integration time constants.

*    Conclusion:
The neural code is based on temporal precision of input spike trains, that 
is neurons behave as coincident detectors rather than leaky integrators.

Is the neural code based on rate encoding or is it 
based on precise processing of coincident 

presynaptic events?

The rate encoding principle which is based on temporal 
integration of input signals would imply that: 
irregularity reflects noise

The precise processing of coincident presynaptic events
principle would imply that:
irregularity does convey information

The problems:

1. Which are the determinants of the highly variable firing 
observed in neurons?

2.   How cortical neurons code information?

Importance of solving the Neural Code problem

A solution would provide the basis for the analytical evaluation of 
the brain’s information processing capability and would give us a 
further insight as to those problems which are essential to its 
functional organisation
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Brief review of the most important attempts to model highBrief review of the most important attempts to model high firing firing 
variability & possible solutions to the neural codevariability & possible solutions to the neural code problemproblem

Shadlen and Newsome, 1994 (S&N94), 1998:
Used a random walk model and a high rate of input signals and produced high irregular firing 

by appropriate balancing of excitation and inhibition on a single cell.
Conclusion: The neural code is based on rate encoding rather than coincidence detection.

Bell et. al., 1995:
Supported the coincidence detection principle & produced high variability with a single 

compartment Hodgkin & Huxley model with:
*    balanced excitation and inhibition (with the balance point near the threshold in 

contrast with S&N94)
*    weak potassium current repolarisation (corresponding to the degree of reset)
*    fast effective membrane time constant.

Lin et al., 1998
Reproduced the results of S&K93 using precise coupling in a network of I&F neurons

arranged in one-dimensional ring topology. 
So: **  Dynamic network effects can indeed produce high CVs, BUT:

**  When these network effects are examined in more realistic neural networks (e.g. 
Usher et al. 1994), they do not produce high variability in the high frequency range 
showed by S&K93.

Brief reviewBrief review…… (continued)(continued)

Feng & Brown, 1998:
Showed using an I&F model that the CV is an increasing function of the length of the 

distribution of the input inter-arrival times and the degree of balance between excitation 
and inhibition (r).  For a range of r (excluding exact balance), CV`s ε [0.5, 1].

Feng & Brown, 1999:
CV`s ε [0.5, 1] can also be obtained with a leaky I&F model (Stein's model) with or without 

reversal potentials (when the attractor of the deterministic part of the dynamics is below 
the threshold and firing results from random fluctuations)

Brown et al., 1999:
Obtained CV`s ε [0.5, 1] with H&H and FitzHugh-Nagumo neurons and random synaptic 

input, independent of the inhibitory input level.

Questions on the work of Feng & Brown:
(i)  No clarification whether the CV values they obtained are for high firing rates.
(ii) They only used the CV statistic for demonstrating high variability; CV`s ε [0.5, 1] are not 

equivalent with Poisson statistics.

Temporally correlated or uncorrelated inputs?
With temporally correlated inputs high firing variability can be achieved (Stevens & 

Zador, 1998; Sakai et al., 1999; Feng & Brown, 2000).  However the assumption that 
inputs to cortical neurons are temporally correlated (or synchronous) is still to be 
convincingly proved.  The correlation hypothesis may be valid for neurons in the auditory 
cortex where correlated inputs have been observed due to cochlear vibrations.

Observation:Observation:

The neural code question relates to the relative 
contribution on the high firing variability of:

the input current fluctuations, denoting
coincidence detection and

the temporal integration, denoting rate encoding 

A possible approach to the problem:A possible approach to the problem:

Using a realistic neuron model, reproduce the high firing 
variability of real neurons and identify the mechanisms of the 
model which this firing irregularity depends on.

Examine which of the reported  mechanisms of irregular firing is 
able to produce Poisson spike trains - the ones that do, are likely 
to reflect the firing mechanisms in real cells.

Quantify the relative contribution of the input current fluctuations 
and temporal integration to the high firing variability.

Note: Neurons may incorporate coding schemes based on a
combination of rate and temporal coding

Our contribution to the debate:Our contribution to the debate:

Testing the effects on the high firing variability of:

concurrent excitation and inhibition
(by using the TNLI neuron model) 

partial somatic reset
(by using a simple Leaky Integrate & Fire neuron)

FFiring variability atiring variability at ddifferent levels of inhibitionifferent levels of inhibition (TNLI)(TNLI)

0 5 10 15 20 25 30
0
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Mean Interspike Interval, ms

Cv (Coefficient of Variation)

100ex/0inh 100ex/40inh 100ex/80inh 100ex/95inh Theory Cv = 1

The theoretical curve for a random spike train with discrete time steps  ∆t and a refractory time 
of tR is given by:

CV(∆tM) = √ [(∆tM – tR)/ ∆tM], where ∆tM is the mean ISI

Christodoulou, C. and Bugmann, G. (2000). Biosystems, 58, 41-48.
Christodoulou, C., Bugmann, G. and Clarkson, T. G. (2002), Neural Networks, 15, 891-908.
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Interspike Interval Histogram DistribInterspike Interval Histogram Distribuutions for tions for 
different inhibition levels (different inhibition levels (∆∆ttMM = 15ms)= 15ms)

10 20 30 40 50
1

10

100

1,000

Interspike Interval Duration, ms

Number of Intervals

100ex/0inh,  Cv=0.396
T=50000ms

100ex/40inh,  Cv=0.570
T=50000ms

100ex/80inh,  Cv=0.870
T=50000ms

100ex/95inh,  Cv=1.198
T=10000ms

• With 80% inhibition the distribution follows a Poisson tail
• Peak present because of clusters of short intervals

Autocorrelogram for the TNLI with inhibition at 80% of excitatioAutocorrelogram for the TNLI with inhibition at 80% of excitationn

∆tM = 15ms; tR = 2ms; CV = 0.87; time step = 1ms

The curve shows a tendency for the model to produce pairs of spikes with intervals typically
7ms.  These short bursts contribute to the high value of the CV.

The depletion on either side of the origin is due to tR, indicating a reduced probability of firing.

The fact that the curve is not flat indicates that: the ISIs are not independent.

Christodoulou, C. & Bugmann, G. (2001).  Neurocomputing, 38-40, 1141-1149.

Effect of concurrent excitation andEffect of concurrent excitation and iinhibitionnhibition on on 
firing variabilityfiring variability

MMain Conclusions:ain Conclusions:

Approximately 80% inhibition on concurrent excitation
produces near Poissonian-type firing at high firing rates.

The presence of clusters at short intervals increases the
CV values.

The ISIs are not independent indicating that the firing is
not completely Poissonian.  Thus, this mechanism is not
likely to reflect the firing mechanism in cortical cells.

Firing variability at different levels of somatic reset Firing variability at different levels of somatic reset 
(Leaky Integrate(Leaky Integrate--andand--Fire model)Fire model)

With partial somatic reset then after each firing at time t:
V(t + ∆t) → αV(t); where α is the reset parameter ∈ [0,1]

Bugmann, G., Christodoulou C. & Taylor, J. G. (1997). Neural Computation, 9, 985-1000.

ISI histogram distributions for different levels of ISI histogram distributions for different levels of 
somatic reset (somatic reset (∆∆ttMM = 15ms)= 15ms)

α = 0, total reset         α = 0.91, closest to Poisson      α = 0.98, bursting

Autocorrelogram for the Autocorrelogram for the LLeaky Integrateeaky Integrate--andand--Fire neuronFire neuron
with partial somatic reset at 91% of the threshold valuewith partial somatic reset at 91% of the threshold value

∆tM = 15.4ms; tR = 2ms; CV = 0.85; time step = 1ms

• Apart from a small depletion in intervals close to the refractory time, 
the curve is flat, indicating independence of the ISIs.

Christodoulou, C. & Bugmann, G. (2001).  Neurocomputing, 38-40, 1141-1149.
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Effect of partial somatic resetEffect of partial somatic reset on firing variabilityon firing variability
ΜΜain Conclusions:ain Conclusions:

Highly irregular firing can be produced with a Leaky
Integrate-and-Fire model equipped with a partial 
somatic reset mechanism.

The irregular firing is of Poisson type 
- verified by examination of the ISIs,

which showed that they are both:
(a) exponentially distributed and (b) independent

Thus:  
Partial somatic reset mechanism is a strong candidate for 

the one used in the brain for producing irregular firing

Bugmann, G., Christodoulou C. & Taylor, J. G. (1997). Neural Computation, 9, 985-1000.
Christodoulou, C. & Bugmann, G. (2001).  Neurocomputing, 38-40, 1141-1149.

Effect on firing variability of partial somatic reset Effect on firing variability of partial somatic reset ––
OtherOther Conclusions:Conclusions:

High variable firing was a result of both temporal
integration of random EPSPs and current fluctuation
detection;  reverse correlation graphs cannot reliably
quantify the contribution of each of these mechanism to
the firing irregularity.

Partial somatic reset is also a powerful parameter to
control the gain of the neuron.

Bugmann, G., Christodoulou C. & Taylor, J. G. (1997). Neural Computation, 9, 985-1000.

Neural Code Neural Code –– open questions & current ongoing workopen questions & current ongoing work::

Ascertain:

1. Whether a firing pattern does indeed represent a `code`,
i.e., What actually constitutes a code?

** Test whether a code has the information to perfom a
particular task (mostly experimental)

Ascertain:

2. What type of code does a firing pattern represent?

** Development of analytical reverse correlation 
techniques to quantify the relative contribution of
the input current fluctuations & temporal integration
to the high firing variability

**  Information theory.
**  Relate the input current and each output spike: 

"What can an organism learn for a sensory input 
given an output spike train?" (Bialek et al. , 1991).

Neural Code Neural Code –– open questions & current ongoing workopen questions & current ongoing work::

Stimulus Reconstruction

Bialek et al, 1991
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