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Introduction

BRAIN – NERVOUS SYSTEM
The biological neural networked systems (BNN) are highly 
interconnected adaptive structures composed of a vast number 
(~ 1012) of non-linear processing elements (PE), or units, or 
biological neurons (BN).

It is estimated that the total length of the brain connections are 
about 109 meters, which is about 25 times the perimeter of the 
earth!

The PE operate simultaneously (parallel processing), directly or 
indirectly influencing one another, working cooperatively in a 
concerted manner.

Because of parallelism, the system exhibits characteristics of  
robustness, fault-tolerance and fuzzy value processing.
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BRAIN – NERVOUS SYSTEM

The BNN have important capabilities such as the capacity for 
learning, memorizing and information retrieval.

The biological neural networked systems can easily execute tasks
such as recognition, generalization, forecasting and many other 
higher cognitive, perceptive, emotional, behavioral and 
generally sentimental tasks (calculations, language, love, 
consciousness, …). 

These emerge naturally in manners that are largely unknown.

i.e complex behavioral systems and patterns arise out of simple 
interactions of a multiplicity of relatively simple units.

ARTIFICIAL – NERVOUS SYSTEM

The ANNs are structures that aim to mimic the operational 
characteristics of natural (biological) neural networks, and 
possibly (or hopefully) to improve on these.

They are composed of many artificial neurons (AN) connected in 
a system, usually of an organized pattern, in which there is direct 
or indirect communication and interaction among all its members. 

There is usually provision for information input and for the 
desired output.

Groups of neurons may be organized into layers or slabs, or any 
other desired formalism.
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SYSTEM     
INPUT

SYSTEM
OUTPUT

AN 3AN 2AN1

AN 5AN 4

AN 8AN 7AN 6

Signal flow

Processing element
Artificial neural network

An emerging global behavior may appear through the use of 
simple local learning, and possibly evolving, rules.

An Artificial Neural Network
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TYPICAL GRAPHICAL FORMALISM FOR ANN REPRESENTATION
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BIOLOGICAL 
SINGLE 

NEURONS
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They are the basic building blocks of a biological neural system 
(brain).

They are relatively slow compared to modern silicon gates 
(slower by about 5 to 10 orders of magnitude).

The information transmission is largely done through 
electrochemical processes.

BIOLOGICAL NEURONS (BN)

12

Some basic biological neurons

Large axon BN
Purkunje

cell at the cerebellum
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There are about 1000 
different kinds of 
neurons in the brain !

14

Information transmission

Stimulus

Receptor
e.g.

Mechanoreceptors
Photoreceptors
Chemoreceptors
Thermoreceptors
Nociceptors (pain)

BNN

(Brain)
Effector

Response

e.g.

Light in eye,

Pressure in finger

e.g

Closure of eye lids,

Pain
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Membrane
Thickness ≈ 5 to 10 nm = 0.000005 to 0.00001 mm
Capacitance ≈ 0.944 µF/cm2

Field intensity ≈ 12000000 V/m = 120 kV/cm

Cell body (soma)
Internal voltage ≈ - 60 to - 80 mV

Αxon of sending 
neuron

Synapse

TRIGGER ZONE

Nucleus

Dendrite of receiving 
neuron

AXON HILLOCK

Αxon or nerve fiber
Diameter:  0.5 - 22 µm in vertebrate

500 - 1000 µm in the squid giant axon

Node of ranvier

Μyelin
sheath

DENDRITE OF 
RECEIVING NEURON

More detailed (but still encyclopedic) look on the biological neuron

16

The axons, mainly of the peripheral nervous
system, are enclosed by other neurons (Schwann 
cells or neurolemmocytes ) to create an 
insulating/protective myelin sheath.

The length of an axon can be large (about 1m in 
some human motor neurons) or very small as for 
instance the amacrine neuron cells in the retina.
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Synapse

Diameter ≈ 1 µm = 0.001mm

Gap ≈20 to 40 nm 
= 0.00002 to 0.00004 mm

Diameter/Gap ratio ≈ 100

Delay in the transmission of the 
pre-synaptic potential to a post-
synaptic potential ≈ 0.3 to 1.0 ms

Velocity ≈ 0.2 cm/minute

The medium for the signal transmission 
is basically of electrochemical nature.

There exists a great variety of synapses.

Even the position of a synapse 
may result in significant difference 
in signal transmission.

The transmission of coded information at the synapses is 
primarily done with chemical substances known as 
neurotransmitters
(e.g. acetylcholine, norepinephrine, dopamine, 5-
hydroxytryptamine serotonin, aminobutyric acid GABA).

These phenomena are mainly occurring in the mammal nervous
systems.
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There also exist electrical synapses, but these occur mainly in 
lower animals.

The systematic use of a synapse is believed to 
improve its efficacy.

learning, memory

Hebb’s Rule

20

INFORMATION TRANSMISSION
(Generation of the Action Potential)

Excitation from 
the environment

Sensory 
receptor

Action Potential

Time

mVNeuron

Synapse Graded Potential

mV

Time

Stimulus

Time

The receptive sensors convert 
changes in the environment
(light, pressure, chemical 
constituency, ...) in Graded 
Potential (GP) (postsynaptic 
dendritic potential, transducer 
potential, or input potential). 

The graded potential is 
gradually weakened (decaying) 
as it is propagated towards the 
soma.

Many graded potentials from 
different dendrites are 
accumulated to create a bigger 
or smaller one, which, if it 
reaches a threshold  of about –
40mV at the trigger zone, it 
becomes an Action Potential
(AP) – (a train of pulsed 
voltages, nerve impulses or 
spikes)

Habituation

Another neuron
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Obviously, the synapses that 
are closer to the axon they 
have a higher probability in 
contributing to the 
generation of the action 
potential.

ΕΞΩΤΕΡΙΚΟ
ΕΡΕΘΙΣΜΑ

(Excitation from 
the environment)

ΒΑΘΜΩΤΟ
∆ΥΝΑΜΙΚΟ

(Graded Potential)

ΣΥΝΑΨΗ
(Synapse)

ΝΕΥΡΙΚΗ ΩΣΗ
ή

∆ΥΝΑΜΙΚΟ
∆ΡΑΣΗΣ

(Action Potential)

χρόνος

ΥΠΟ∆ΟΧΕΑΣ
ΑΙΣΘΗΤΙΚΩΝ
ΕΡΕΘΙΣΜΑΤΩΝ
(Sensory receptor)

ΕΡΕΘΙΣΜΑ
(Stimulus)

ΝΕΥΡΩΝΑΣ
(Neuron)

mV

mV

χρόνος

χρόνος

So, the system may simply 
be thought as a voltage to 
frequency converter, in a 
similar way that is used in 
some communication 
systems.

22

Action potential (or spike) (AP)

Time [ms]

POTENTIAL [mV]

- 70

- 40

0

+ 40

1 2 3

THRESHOLD
(∆ΥΝΑΜΙΚΟ ΚΑΤΩΦΛΙΟΥ)

GRADED POTENTIAL
ΒΑΘΜΩΤΟ ∆ΥΝΑΜΙΚΟ

RESTING POTENTIAL
(approximately -60 to -80 mV)

OVERSHOOT
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Some characteristics of the Action potential

Wavelength ≈12 cm

Amplitude ≈110 mV above the resting potential (RP)

The amplitude of the AP does not diminish as it is propagated 
along the axon.

Speed of propagation ≈ 0.5 - 120 m/s 
(1.8 - 432 Km/hour)

It depends mainly on the axon diameter and on the presence or 
not of the myelin sheath.

Taking into consideration the fact that at each synapse many 
different kinds of neurotransmitters are also transferred, the 
information transmission is impressive.

The information transmission in synapses is done in parallel. 

Because of this, the frequency of changes is about 1016 per 
second.

It was believed that synapses that are nearer an axon contribute
more towards a generation of an Action Potential. 
Modern computer simulations though, indicate that this is not 
always true, mainly due to the non-linearity of processing.
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GLIAL CELLS (or Neuroglia or Glia)

These are non-neuronal cells (do not generate AP, do not have 
synapses) that provide support and nutrition, maintain 
homeostasis, form myelin (Schwann cells), and participate in 
signal transmission in the nervous system. 

They compose most of the n mass (~ 90%).

Neuron

Glial

They also help for the support and guidance of embryonic 
neurons.

There are indications that they communicate with the 
neuron cells and among themselves
(Stephen Smith, Yale U., 1993).

There are five different types of glial cells:

Astrocytes: Provide physical and nutritional support.
Digest part of dead neurons.
Regulate the extracelullar fluid.

Microglia: Digest part of dead neurons.
Oligodendroglia: Provides insulation for neurons (myelin).
Satellate cells: Provide physical support.
Schwann cells: Provide insulation for neurons (myelin).
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Comparisons

Organism leech Worm Fly Cockroach Bee Man

Number of 
Synapses >104 >105 ~109 <1011 >1011 ~1014

There are about 1010 – 1012 neurons in the brain

and about 1013 – 1016 synapses.

28

Comparisons
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Models of Biological Neurons

In the following section, a list of the most important 
mathematical models of single biological neuron cells will be 
presented.

The most important features (functional and structural) will 
be identified, mainly to be appraised as possible valuable 
characteristics in building useful artificial neuron models.

It is not the objective to get involved in the intricate chemical 
and physiological processes, that may be of interest to a 
neurologist. 

The following information on the mathematical models of BN 
is rather intended to help gain an understanding of the various 
structures of the models.

30

Generation of the Action Potential
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Generation 
of the 
Action 

Potential

32

Modeling the Action Potential

Time

POTENTIAL

SPIKE TRAINS AT 
DIFFERENT 
FREQUENCIES

AN ACTION 
POTENTIAL
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Time

POTENTIAL

Time

POTENTIAL

Time

POTENTIAL

Time

POTENTIAL

Modeling the Action Potential

34

Time

POTENTIAL

Modeling the Action Potential

Time

POTENTIAL

A simple model of the AP 
that is commonly used

Dirac impulse Exponential growth
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Models of Biological Neurons

1. Conductance-based models of BN

These are based on modeling the cell membrane by an    
equivalent electric circuit.

Typical conductance-based models:

Hodgkin-Huxley, (1952)

Fitzhugh-Nagumo, (1961)

Connor-Stevens, (1971)

Morris-Lecar, (1981)

36

2. Compartmental-based models of BN

Because the structure of real bio-neurons is highly complex, it 
is difficult to model the important parameters and 
characteristics through the use of analytic conductance-based 
models.

A more detailed description of neuron dynamics can be 
obtained through the use of compartmental-based models, 
which essentially break down a complex system/structure into 
granules of interacting but simpler building blocks.

A compartmental 
model of a dendritic
section
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Mathematical 
models of BN

1. Conductance-based 
models:

38

The Hodgkin – Huxley (HH) model, (1952)
(1963 Nobel prize in physiology and medicine)

(1 )m m
dm m m
dt

α β= − −

3 4
Na Na K K L L( ) ( ) ( )m m

dVC I g m h V V g n V V g V V
dt

= − − − − − −

The model was developed by using data obtained from 
experiments done on the giant axon of the squid 
(diameter ≈ 0.5 mm).

The 4-dimensional mathematical/quantitative HH model is given below:

Hodgkin A., Huxley A. (1952). A quantitative description of membrane current and its application to conduction 
and excitation in nerve. J. Physiol. 117:500–544.

(1 )n n
dn n m
dt

α β= − − (1 )h h
dh h m
dt

α β= − −

NaI KI LeakageI
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The Hodgkin – Huxley model

where,

Im = Membrane current (the excitation)
Cm = Membrane capacitance
Vrest = – 60 mV
Vna = 50mV
VK = – 77 mV

gNa = 120 mmho/cm2

gK = 36 mmho/cm2

gL = 0.3 mmho/cm2

E = V – Vrest

25
10

0.1(25 )

1
m E

Eα −

−
=

−e
10

10

0.01(10 )

1
n E

Eα −

−
=

−e
100.07

E

kα
−

= e

184
E

mβ
−

= e 800.125
E

nβ
−

= e 30
10

1
k Eβ −=

1 + e

Hodgkin Huxley

40

The HH model is basically a conductance based model.

An equivalent electric circuit is shown below.
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The FitzHugh-Nagumo model, (1961)
This is a two-variable (2D) neuron model. 
It is a simpler form of the Hodgkin – Huxley model. 

It was originally suggested by FitzHugh (1961), who called it 
"Bonhoeffer-van der Pol model“. 

Nagumo et al. proposed an equivalent electric circuit (1962).

3

3
du uu z x
dt

= − − +

1 2 3
dz k z k u k
dt

= − − − 0.080 0.056 0.064z u= + +

FitzHugh R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical J.
1:445-466. 

42

The Connor-Stevens model, (1971)
(Connor and Stevens, 1971; Connor et al. 1977)

3 4
L L Na Na K K

3
A A( ) ( ) (( ) )mI g V V g m h V V g n V g a b V VV= − + − + − −+

The membrane current in this model is given by:

which, basically is the HH model having an additional K-
conductance, called the A-current.

Connor J., Stevens C. (1971). Inward and delayed outward membrane currents in isolated neural somata
under voltage clamp. J. Physiol. Feb. 213(1):1–19.
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The Connor-Stevens model

The figure below shows a typical response of the Connor-Stevens 
model.

The figure below shows a typical response of the Hodgkin-Huxley
model.

44

The Morris-Lecar model, (1981)

Like the FitzHugh-Nagumo model, this is 
also a two-dimensional model. 

They were originally formulated to describe 
electrical activity in barnacle muscle fiber.

The general mathematical form is given by:

Ca Ca K K L L( ) ( ) ( )m m
dVC I g m V V g n V V g V V
dt

= − − − − − −

Morris C., Lecar H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys.  J., 35:193-213. 

(1 )n
dn n
dt

α= −
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The Morris-Lecar model
In quantitative form the equations are  given by:

1.1 (1 ) 2 ( 0.7 ) 0.5( 0.5 )dV I m V n V V
dt

= + − + − − + − −

( )dn n n
dt

εα ∞= −

0.120.5 1 tanh
0.30

Vn∞
+⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0.010.5 1 tanh
0.15

Vm +⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0.22cosh
0.60

Vα −⎛ ⎞= ⎜ ⎟
⎝ ⎠

46

The Ermentrout-Kopell canonical model
(also known as the "theta model" )

1 cos (1 cos )d I( t )
dt
θ θ θ= − + +

The Izhikevich canonical model
(Izhikevich, 2000)

( )

( )

1

2 3 4

1 cos (1 cos )d k w
dt
dw k k k w
dt

θ θ θ

θ

= − + + +

= − −

(Ermentrout and Kopell, 1986)
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Spiking neuron models

20.04 5 140m m
dVC I V V n
dt

= + + + −

Izhikevich E. (2003). Simple Model of Spiking Neurons. IEEE Trans. on Neural Networks, 14:6, 1569-1572.

Different spiking neuron models have been 
proposed. These could be attempts to model 
the real BN, or as artificial neurons to be used 
in artificial neural networks.

( )n
dn bV n
dt

α= −

Another such model, proposed by Izhikevich (2003) has a 
structure as shown below:

The previously described real neuron models can generate spikes,
and thus are spiking neurons.

48

Integrate and Fire models

1 2 3( )dV k V k k
dt

= − +

Lapicque L. (1907). Recherches quantitatives sur l’excitation e´lectrique des nerfs traite´e comme une polarisation. 
J Physiol Pathol. Gen 9: 620–635.

Originally proposed by Lapique, back in 1907.

It have been extensively used by Grossberg, Hopfield and many 
other ANN researchers as it will be shown later.

Basic form of the equation:

which is a simple 1D, linear approximation of the previous 
models.

Simple linear model:

Non-linear model:
2 3

dV f (V k ) k
dt

= − +
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Mathematical models of BN
2. Compartmental-based models of BN:
Compartmental-based models are mainly used in order to cope 
with the difficulties encountered during attempts to model in 
detail the important parameters and characteristics of real BN.

For a detailed analysis, one has to use partial differential equations

(cable equation, ) that can be handled with 
appropriate numerical mathematics.

2

2
1( , )V VC I V t

t R x
∂ ∂⎛ ⎞+ = ⎜ ⎟∂ ∂⎝ ⎠

A simplified 
model of a 
neuronal axon

50

Compartmental-based models of BN

So, the basic idea is to discretize parts of the neuron, e.g a 
dendrite or soma, in a compartmental manner, and then apply the 
required cable equations that can be solved through numerical 
techniques.
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Such models can accommodate spatial variations in the 
membrane response.

They can be done in different degrees of detailing.

Compartmental-based models of BN

Typically, they use the linear Integrate and Fire model (which is 
an oversimplified cable equation) as a basic compartment 
building block. 

1 2 3( )dV k V k k
dt

= − +

52

Compartmental-based models of BN
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Compartmental-based models of BN

54

Compartmental-based neuron models and simulations are usually 
done with suitable computer programs such as:
NEURON
http://www.neuron.yale.edu/neuron/papers/nc97/nctoc.htm
http://www.neuron.yale.edu/neuron/install/install.html

GENESIS (GEneral NEural SImulation System) 
http://www.genesis-sim.org/GENESIS/

XPPAUT
http://www.math.pitt.edu/~bard/xpp/xpp.html

NODUS
http://www.tnb.ua.ac.be/SOFT/NODUS_info.shtml

Neural Simulation Language 
http://www.neuralsimulationlanguage.org/

Compartmental-based models of BN
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NEURON SIMULATOR

Compartmental-based models of BN

56

Artificial neurons (AN)
These are simpler models of BN that are designed to help in 
building  useful ANNs.

From the previous description of BN, we can identify some 
important and specific characteristics that are common to most 
neurons and can be used in building AN.

These are:

They are time-dependent processors.
They accumulate different signals.
They have multiple inputs – one output (MISO).
The output is a train of approximately constant amplitude spikes.
They are largely non-linear processors.
They have many local feedbacks.
They exhibit adaptivity.
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Artificial neurons

They can be implemented in suitable mathematical expressions, 
in software or in hardware.

In hardware, they can be electrical-electronic, micromechanical, 
nanomechanical, chemical, optical, ...

Functionally, they are similar to the cellular automata.

58

A generic form of a single artificial neuron model

IN
PU

T

SUBSYSTEM OF 
FEEDFORWARDS AND 

FEEDBACKS
h

POST-ACCUMULATOR
PROCESSING

Subsystem of functional and 
dynamical processors , p2

PRE-ACCUMULATOR
PROCESSING

Subsystem of functional and 
dynamical processors

including cross-correlations, 
p1

D
IS

T
R

IB
U

T
O

R

MAIN
ACCUMULATOR

SUBSYSTEM CONTROLLING 
THE ADAPTATION
OF PARAMETERS

Inputs from the environment
or from other neurons

Output to the environment 
or to other neurons

O
U

T
PU

T
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The main usefulness of the 
previous model is to help a 
researcher who is 
interested in exploring the 
computational properties 
of artificial neurons and in 
organizing the field. 

It is not an attempt to 
model in detail the real 
biological neurons, even 
though in its general 
structure resembles the 
real neuron. 
This scheme may be viewed as a parent model of most of the existing 
models, as it will be demonstrated in the following models. 

The component blocks may be of considerable complexity, possibly
involving local or remote feedbacks and feedforwards (within the 
neuron). 

IN
PU

T

SUBSYSTEM OF 
FEEDFORWARDS AND 

FEEDBACKS
h

POST-
ACCUMULATOR

PROCESSING

PRE-
ACCUMULATOR

PROCESSING

D
IS

T
R

IB
U

-
T

O
RMAIN

ACCUMU-
LATOR

SUBSYSTEM CONTROLLING 
THE ADAPTATION
OF PARAMETERS

O
U

T
PU

T

60

These component blocks may 
define a subsystem in terms of 
functionals, dynamical 
operators (differentiators or 
integrators) – and hence 
having internal delays, or may 
be defined as a combination of 
functionals, dynamical 
operators, and algorithmic 
procedures.
The structural components of the model are identified to be:

The pre-main-accumulator processing subsystem

The main-accumulator

The post-main-accumulator processing subsystem

The output distribution subsystem (distributor)

The subsystem of feedback(s) and feedforward(s) 

The parameter adaptation subsystem
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A more detailed form of the generic single-neuron model as used in many ANNs

σj
dj

O(⋅)

fj
O(⋅)

gj(⋅) yjDISTRIBUTORΣ

+1

bj(⋅)x1

xi

xΝ

D1j 
I(⋅)

F1j 
I(⋅)

Dij
I(⋅)

Fi j 
I(⋅)

DΝj 
I(⋅)

FΝj 
I(⋅)

A

...

...

Main 
accumulator

Post-main-accumulator 
subsystem

A

A

A A

Bias

where, 
D’s are dynamical transfer operators (involving differentials).
F’s are functional operators (involving differentials)
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σj

+1

bj(⋅)

x
Xk

Fj
I(⋅) A

Dj
I(⋅) A

gj(⋅)

dj
O(⋅)

fj
O(⋅)

AA DISTRIBUTORÓ

SUBSYSTEM OF 
FEEDFORWARDS 
AND FEEDBACKS
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A comment on the distributor

The existing models do not accommodate the possibility for joint
regulation and control of the synaptic signal, since each neuron operates 
locally, basing its action on the local information available. 

The artificial neurons however could impose a conditional processing or 
some joint preprocessing, governed by the knowledge of the state of one 
on the other(s). 

Such a system becomes more complicated but it may open the way for new 
computational paradigms. 

The control of this distributor could even be exerted by an external agent, 
operating as an overall supervisor. 

Such a prospect of course may deviate from the subsymbolic formality and 
hence weaken the autonomy of the unit. It could however be controlled by 
some other subsystem of the overall neural network. 

64

A comment on the distributor

The important issue being that any new scheme will be accepted if it 
results in more efficient, novel and useful neurocomputational processing. 

To make this point clearer, two examples of possible schemes are
presented here.

Suppose neuron j sends signals to neurons α, β, γ, δ. 
Example rule 1:
Neuron α accepts a signal from neuron j if the ratio of the activation of β to 
γ is greater than some suitable function of the activation of δ.

Example rule 2: 
Neuron α accepts a signal from neuron j if the activation of β and γ is 
greater than the activation of δ.

Rules like these, (simpler or more complicated) could be used in order to 
help explore new neurocomputing paradigms.
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Continuous-time mathematical description

where,

t = Time t ∈ R

u(t) = Internal potential u(t) ∈ R m

w(t) = Synaptic weights w(t) ∈ R q

x(t) = Output state x(t) ∈ R n

y(t) = Neuron output y(t) ∈ R

φ(.) = Internal transfer functions φ(t) ∈ R m

f(.) = Activation function f(.)∈ R

( ( ),  ( ),  ( )) d f t t t
dt

=
u u w x ( ) ( ( )) y t f t= uand
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Discrete-time mathematical description

where, κ = discrete time counter

and all the other symbols are defined as per previous slide.

[ 1] ( [ ],  [ ],  [ ]) u fκ κ κ κ+ = u w x [ ] ( [ ]) y fκ κ= uand
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A taxonomy of SNM
BASED ON THE NEURON STRUCTURE
Pre-main-accumulator characteristics

Input signal correlations: 1st, 2nd, or higher order
Input signal dynamics: Linear-nonlinear, 1st, 2nd, or higher order 

Main-accumulator characteristics
Sigma, Pi, Sigma-Pi
Radial basis function types

Post-main-accumulator characteristics
Presence of dynamics: Linear-nonlinear, 1st, 2nd, or higher order
Presence and type of functionals:

Linear, ramp, threshold, hard-limiter,
sigmoid, Gaussian, polynomial …

Type of feedback
Single or multiple
Local or remote
Coupling many neurons into a single complicated unit 

68

A taxonomy of SNM
BASED ON THE DEGREE OF STOCHASTICITY USED IN THE 
MODEL

Purely deterministic models

Purely stochastic models

Mixed models

BASED ON THE DEGREE OF RESEMBLANCE TO A REAL 
NEURON
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Simple model of an artificial neuron

Input data

x1

x2

xN

w1

w2

wN

Synaptic
weights

Soma

Output data
y

N

i i
i

y f( x w )= ∑

∑

Summator
(Accumulator)

Activation function
f(.)
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Activation functions
(ΣΥΝΑΡΤΗΣΕΙΣ ∆ΡΑΣΤΗΡΙΟΠΟΙΗΣΗΣ)

y = HH

y = L
L

f(u)

uuH

uL

y = S(u) = min(H, max(L, f(u))) = max(L, min( H,  f(u)))

Generic form y = S(u)

y
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Linear
(Γραµµική)

Activation functions

Ramp
(Σκαλωτή)

u

c
y

y = su + c

where, s = Slope

y = min( H, max( L, su + c))

H
c

up
L

y

u

uL

uH
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Quantizer, signum, hard limiter, Heavyside
(περιοριστής, ή κβαντιστής, ή ψαλιδιστής)

Threshold
(στοιχείο κατωφλίου)

     
      

y f u
⎧

= = ⎨
⎩

( )
+1 if   u ≥ 0

0 if    u < 0

 
      

    
⎩
⎨
⎧

== )sgn(uy
+1 if  u ≥ 0

-1 if u < 0
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Logistic sigmoid
(Λογιστική-σιγµοειδής)

-5

-3

-1

1

3

5

7

9

-5 -3 -1 1 3 5 7 9

y

u
( )

A c  
1 s uy

e γ− −= +
+

))max(min( 4) - (1
12  3- -2, 8,  ue

y −+
+=
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Other important activation functions that have been used in AN: 

)sin(suy A  c +=Sinusoidal

)(1
)1(A  cA  c 2

2

su

su

suy −

−

+
−

+=+=
e
e)tanh(

Tanh

2

2

1
1)(A  c  

n
u

n
y us )cos(e γγ −+= −−Gabor

u
u

n

n

y
+

+=
1
A  c Polynomial Ratio
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n
y us )(A  c  γ−−+= eGaussian

and many others

-5

-3

-1

1

3

5

7

9

11

13

15

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

u

y = min( 8, max( - 2, -3 + 15e – 0.5(u - 4) 2)))
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The most common models of artificial single neurons

In the following presentation, the most common single neuron 
models (SNM) as used in ANNs will be presented.

The objective is to identify and present the most representative
and most influential in a rather chronological manner.

Obviously, this is not an exhaustive list, but it certainly helps in 
identifying the important features and enables an interested 
researcher to proceed to a rigorous comparative simulation if the 
need arises.

The models will be given in a mathematical description (in an 
indicial and/or matrix formalism). Many of the models will also be  
presented as block diagrams.
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STATIC (Functional) MODELS

Neuron model

x(t)

t

y(t)

t

78

x1(κ)

x2(κ)

.

.

.

xN(κ)

w1(κ)

w2(κ)

wN(κ)

Σ

N

1
    θi i

i
u x w

=

= +∑
y = sgn(u)

1θ

Bias (ΠΟΛΩΣΗ)

The McCulloch and Pitts model (1947)

jth neuron:

Warren McCulloch



Summer School on Intelligent Systems 
University of Cyprus, Nicosia, Cyprus, July 2-6, 2007 

Costas Neocleous, PhD

40

79

The McCulloch and Pitts model (1947)

x
Σ[ ]Wj

uj yjfj(⋅)

N N

1 1

j j j j ij i ij i

i i

y f u f w x w x
= =

= = =∑ ∑sgn ( )( ) ( )

T T
j j j j j jy f u f= = =w x sgn(w x)( ) ( )

In matrix form:

In a more condensed form:

In indicial form:

It is noted that this model 
is not dynamic and thus 
there is no time-
dependent property 
growth.

These types of neuron 
models are called static 
(or functional) neurons as 
opposed to dynamic 
neurons.

Walter Pitts
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[ ]/vj
uj

Σ
x

Σ

[ ]wj

-1

fj(⋅)
yj

Basic “means - variance connections” model 
(Robinson, 1988)

2

N

1

.5 j

i ij
j

iji

o u
j j j

x wu
v

y f u

−

=

−

=

=

∑

( ) = e
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Fukushima model (1988)

ujΣ
yjσj fj(⋅)

] [
1

N

1

1
1

1

i ij

ij j j j
j j

x w
y f u f

q v
( )=

+
= = −

+

∑
( )

Σ

+1

Π Σ

-1

Σ

+1

qjvj

x [ ]Wj

Kunihiko Fukushima
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“Product of complements” fuzzy model
(Simpson, 1991)

( )( )( ) ( )( )( )
N N

1 1

1 11 min 1,max 0, 1 min 1, max 0,j i ij i ij
i i

y x w x v
N N

γ γ
= =

⎛ ⎞⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

x

σ2

σ1

+ 1

+ 1

Σ ã(⋅ ) Σmax(0,[ ])min(1,[ ]) -1/n Σ

-1/nã(⋅ ) ΣΣ-1 max(0,[ ])min(1,[ ]) Σ

yj

Π

[ ]wj-1

[ ]vj+1
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General form of radial basis function neuron model
(Lowe, 1995)

yj

Σ
x

Σ

v

-1

h( � . �) [ ]wj

N

1
ij i ij ij

i
y w h x v−

=

= ∑ ( )

In most of the cases, the form of the function h(.) is Gaussian.
( )2

2
,

i i

i i

x v
rh x v e
−

=( )
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DYNAMICAL MODELS

y(t)

t

x(t)

t Neuron model

y(t)

t

x(t)

t Neuron model



Summer School on Intelligent Systems 
University of Cyprus, Nicosia, Cyprus, July 2-6, 2007 

Costas Neocleous, PhD

43

85

The Leaky Integrator and Fire (LIF) model
Caianiello (1961), (Grossberg, 1968), Amari (1972), (Hopfield, 1982)

uj
Σ

x [ ]Wj

yjfj(⋅)kj
σj Σ

bj

1

jq
1

dt

d ] [
−

N

1

j j j j j i ij

i

j j j

u q u b k x w

y f u
=

= − + +

=

∑
( )

Stephen Grossberg John Hopfield
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The “Brain State in a Box” model 
(Anderson et al., 1977)

N

1

j j j j j i ij j j

i

a a f a k x w a y
=

= − + + = − +∑( )

uj
Σ

yjkj
σj Σ fj(⋅)

dt

d ] [
− Σ

aj

x [ ]Wj

James Anderson 
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N

1
j ij i j j

j j j

i
u h x f u

y f u
=

= −

=

∑ ( ) ( )

( )

The Kohonen (1983) generalized model

Teuvo Kohonen

-1

yjuj

Σ fj(⋅)
x h(⋅) []∫

ju
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N

2
11

1 j
ij ij j j

j ij
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The “Hysteretic neuron” model
(Hoffman and Benson, 1986)
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Π Σ
x

[ ]wj
σj

Σ
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Α “Recursive high-order neuron” model
(Kosmatopoulos, 1992)

N N N N N

...
1 1 1 1 1

... ... ...

j j j

j j i ij i k ikj i m i mj
i k i m i

u u x w x x w x x w
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d
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yjuj 
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“Transient chaotic neuron” model 
(Chen & Aihara, 1995)

σj
Σ

-�

Σ
uj yj

Sj(⋅)k1j Σ
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New combined neuron models

These can be obtained by combining the best features of the previous models.

As an example here is a combination of the Chen and Aihara “transient chaotic 
neuron” with the “brain state in a box” model (Neocleous & Schizas, 1995).

x
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+
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Comparison of biological 
and artificial neurons and networks

BIOLOGICAL 
NEURONS

AND NETWORKS

ARTIFICIAL 
NEURONS 

AND NETWORKS

Dense connections
~ (1012 neurons)(104 synapses) =
= 1016 connections  

Single neurons are different to one another
Modular structures
Autonomous local interaction

Parallel processing
Very little energy consumption
Non-mathematical or algorithmic operation

Few connections

Mostly similar to one another
Partly modular
Non-autonomous

Usually supervision is needed
Mostly serial processing 
Much energy consumption
Mostly mathematical or algorithmic description


