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MOTIVATION and AIMS

• Develop a new approach to 
Computational Science based on high-
level (direct) declarative scientific 
modelling

• Rich expressive power (close to human one)
• Computational and Formal foundations

• Automated help in the process of 
Scientific Theory development

• Analysis of data, generation and evaluation of 
hypotheses.
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Underlying THESIS of Approach

• Development of scientific theories is 
incremental where we need to exploit fully 
the knowledge acquired so far

• Declarative Modelling can facilitate this. 

• Declarative modelling is well-suited for 
Bioscience (e.g. Functional Genomics)

• nature of existing biological knowledge is largely 
descriptive,

• exploit the large and varied corpus of knowledge 
accumulated so far.

• Compare with “conventional bioinformatics”.
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BACKGROUND

• Computational Modelling in 
Systems Biology
• Mathematical/statistical modelling 

approaches for Metabolic and Genetic 
Networks

• Artificial Intelligence in 
Bioinformatics

• Qualitative Biochemistry
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BACKGROUND (cnt.)

• Knowledge Representation and Reasoning
• Medical Expert Systems

• Machine Learning & Data Mining
• Medical applications e.g. protein folding

• Modelling and hypotheses formation
• ALP and ILP representation frameworks

• Closed Loop Learning and Knowledge Development

• R.D. King et al, “Functional Genomic hypothesis 
generation and experimentation by a robot 
scientist”, Nature Vol. 427, 15 Jan 2004, pp. 247-
251.
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Scientific Modelling and Logic
(Logic for Declarative Modelling)

• Start with models that represent the prior 
knowledge of our domain in a logical form

• Model cellular metabolism by capturing through 
logical formulae all the objects and key 
relationships between protein-coding sequences, 
enzymes and metabolites in known pathways:

• Coding
• Reactions
• Transport
• Feedback

• Compute and develop the models through
logical reasoning.
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EXAMPLE: A “socio-economic”
model of Universities

• Language/Ontology of relations
{sad/1, overworked/1, academic/1, student/1, 
lecturer/1, poor/1}

• Model & background knowledge
sad(X) if overworked(X), poor(X)

overworked(oliver) 
overworked(alex) 
overworked(krycia)
lecturer(alex) 
lecturer(krycia) 
student(oliver)
academic(alex), …

• We can deduce (compute) the information of sad(alex)
but we can not deduce anything new for oliver or 
krycia.
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Reasoning for 
Declarative Problem Solving

Deduction: analytic reasoning, inferring a 
result from applying general rules (model) to 
particular cases, e.g.
from     A (case)  and   B if A  (general rule)
infer     B  (result)

• Deduction: produces observable 
(phenotype) information.
• Example: sad(ale) can be observed/tested.

• But this information is already known in the 
model. How can we improve the model?
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Scientific Modelling

• Any scientific model can be (is) incomplete!

• Information is separated into three types:

• Observable (phenotype) – obtained from 
experiments via observations

• Theoretical (functional genotype) – underlying 
relations that cause the observable behaviour

• Background – known relevant properties, e.g. 
structural or chemical information.

• Example: {sad/1, overworked/1, 
academic/1, student/1, lecturer/1, poor/1}
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Scientific Modelling (cnt.)

• The  incompleteness of the model resides in 
the theoretical part (e.g poor/1)

• The task is to complete the model by finding 
theoretical information and developing a 
theory for this.
• HOW do we synthesize definitions for the 

unobserved theoretical relations?

• ANSWER: Scientific theories are “explanatory” and 
“unifying”
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Reasoning for 
Declarative Problem Solving

Deduction: analytic reasoning, inferring a 
result from applying general rules to 
particular cases, e.g.
from     A  (case)  and   B if A  (general rule)
infer     B  (result)
Abduction: synthetic reasoning, inferring 
the case from the rule and a result, e.g.
from     B (result) and  B if A  (general rule)
infer     A  (case)
Induction: synthetic reasoning, but 
inferring the rule from the case and the result
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Synthetic Reasoning for 
Declarative Problem Solving

Deduction: concerned with PREDICTION of 
phenotype from a given model

T |= Obs

Abduction: concerned with EXPLANATION
according to a given model: produces genotype
information

T U H |= Obs H specific (genotype) information

Induction: concerned with GENERALIZATION of 
information outside the observed situations

T U H |= Obs H general (genotype) information
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EXAMPLE: A “socio-economic” model of 
Universities (Cnt.)

• Model & background knowledge

sad(X) if overworked(X), poor(X)

overworked(oliver) 
overworked(alex) 
overworked(krycia)
lecturer(alex) 
lecturer(krycia) 
student(oliver)
academic(alex), …

• Observations = {sad(alex), sad(krycia), not sad(oli)}

• Abductive Explanation =
{poor(ale), poor(krycia), not poor(oli)}

Abducible
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Abduction for Scientific Analysis

Experiment

Observe

Generate hypotheses

Verify hypotheses

Revise hypotheses

Abduction

Rationalises 
the

Observations
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Evaluating Abductive Explanations

• Predictive Accuracy
• On known and unknown cases

• Simplicity
• Minimality

• Domain specific (preference) criteria
• Language Bias

• Computational Complexity
• E.g. Localized effects

• Generalizability
• LINK WITH INDUCTION
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Integration of 
Abduction & Induction

Abduction: problem solving given an adequate 
but incomplete model of the problem domain

Generates explanations: specific hypotheses on the 
incomplete part of the model
Rationalizes/normalizes the observations.

Integration with Induction
Feed explanations to Induction.
Induction: development of the model by a (partial) 
theory for its incomplete part.

Tight Integration
• Explanations and their Generalization are evaluated as 

a whole.
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EXAMPLE: A “socio-economic” model of 
Universities (Cnt.)

sad(X) if overworked(X), poor(X)

overworked(oliver) 
overworked(alex) 
overworked(krycia)
lecturer(alex) 
lecturer(krycia) 
student(oliver)
academic(alex), …

• Observations = {sad(alex), sad(krycia), not sad(oli)}

• Abductive Explanation =
{poor(ale), poor(krycia), not poor(oli)}

• Inductive Hypotheses: poor(X) if lecturer(X)
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Logical Reasoning for 
Scientific Analysis

Experiment

Observe

Generate hypotheses

Verify hypotheses

Revise Model

Abduction

Rationalises 
the

Observations

Induction

Generalizes 
the rationalization 
and hence the Obs
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EXAMPLE: Searching for Hypotheses

• poor(X) if female(X)
• Not as accurate (as poor(X) if lecturer(X)) as we 

only know female(krycia).

• poor(X) if academic(X)
• poor(X) if young(X)

• Not as accurate as each would imply sad(oliver).

• poor(X) if academic(X), lecturer(X)
• poor(X) if young(X), lecturer(X)

• Same accuracy but not as compressive.



11

21

EXAMPLE: Verifying Hypotheses

• poor(X) if lecturer(X)

• The socio-economy specialist is sceptical as it 
knows that students are poor.
• The hypotheses is rejected and new partial 

information is now given:
poor(X) if student(X)

• Model now is refined to:

sad(X) if not student(X),overworked(X),poor(X)
sad(X) if student(X), alone(X)
poor(X) if student(X)
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EXAMPLE: Verifying Hypotheses

• Model now is refined to:
sad(X) if not student(X),overworked(X),poor(X)
sad(X) if student(X), alone(X)
poor(X) if student(X)

• Observations = {sad(alex), sad(krycia), not sad(oli)}

• Abductive Explanation =
{poor(ale), poor(krycia), not alone(oli)}

• Inductive Hypotheses: poor(X) if young(X), lecturer(X)

(Note: “poor(X) if young(X)” is rejected because we 
know young(bill), rich(bill).)
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Uncertainty in the Model/Hypotheses

• Rules are not absolute!

• Non-monotonic Logic
• Rules and Exceptions
• Rules and Integrity Constraints
• Preference Reasoning

• Accuracy is typically not 100%
• Statistical methods in search for hypotheses
• Predictive accuracy improvement.

• No time to go into the details.
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Frameworks and Systems

Deduction: Logic Programming & PROLOG (1970-)

Abduction: Abductive Logic Programming (1990-)
ACLP & A-system
IFF
SLDNFA

Induction: Inductive Logic Programming (1990-)
FOIL
Progol

Integrated Abduction and Induction (2000-)
Progol
HAIL
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Applications to Bioscience

• Gene Regulatory Pathways

• Inhibition in Metabolic Networks

• HIV Drug Resistance
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CONCLUSIONS

• Use of logical inference can be powerful 
method for “rationalization” of scientific 
phenomena.
• But it needs a good problem domain model with:

• Clear hypotheses of the basic model
• Parameters of variation of analysis of the phenomena
• Well-informed strategy of use and feedback analysis

• Offers a systematic methodology for 
modelling and analysis under 
known/engineered hypotheses.
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CONCLUSIONS (again)

• In the complex bioscience domain this 
analysis can result in hypotheses to be 
tested.

• Start with a good biological model and go 
one step further

• Type of hypotheses can be controlled by 
“biological expertise”

• Declarative and modular logical 
representations facilitate the modelling and 
analysis.
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Inhibition in Metabolic Pathways
METALOG Project
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Metabolic pathways ALP Model

• PROGRAM T:

• down(M):-

• reaction(E1,M,M1),

• inhibited(E1),

• not compensated(M,E1).

• compensated(M,E1):-

• reaction(E2,M,M2),

• diff(E2,E1),

• increased(E2).

• INTEGRITY CONSTRAINTS IC:

• false if inhibited(E), increased(E).

• ¬(inhibited(E), increased(E))

E12

M1

M2 M3

M4 M5

E23

E35

E45

M6

E46
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Microarray Gene Mutation 
Experiments at CMMI


