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How do we represent digital images 
and digital videos?

What is a digital image?

We represent grayscale images in terms of a
matrix of numbers.
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A color image example

For color images, we can simply specify three
images: red, green and blue.

Digital Video

Typical video at 30 frames per second can be
represented using 30 frames of Red, Green
and Blue images per second.

Usually, we use 8-bits per color component sample.

However, video images are stored in alternative
color formats. Even so, for the Standard Input
Format (SIF) standard for MPEG, this works out to
about 30.4 MBps.
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What is intelligent image 
processing?

We refer to intelligent methods to methods in
image and video analysis. 

We will focus on problems on image and
video classification.
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Image Classification Steps

1. Collect images from different classes
2. Standardize the input images
3. Apply feature extraction to extract a 

vector of features.
4. Develop a classifier based on texture 

features.
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Finding Similar Things
• Correlation-based methods

– Can compute correlation between any query object and an image 
to handle translations. Can extend this to other types of 
transformations (eg: rotations)

• Mutual-information based metric
– Powerful method to measure distances between images from 

different devices
• Define a metric for computing distances between any pair 

of images
– Can select images that are closest to be the most similar
– Can perform a majority voting scheme for handling the case of 

using multiple metrics with different types of features
• Can use a multivariate PDF method to compute likelihoods 

that an image belongs to a particular class of objects

Collecting the right 
database of images

There is a number of acquisition parameters
that can significantly affect the performance:
• angle and distance to the target
• illumination parameters
• sampling issues
• occlusion
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Establishing acquisition limits

Variation is inevitable. We want to establish
the maximum allowed variability so that we
can establish:
• Invariance from the same class

– Features corresponding to the same class belong to 
the same distribution

• Discrimination from different classes
– Features corresponding to different classes should 

belong to different distributions

Invariance to Viewing Conditions

There are some obvious problems that every
good design must address:
• Rotation invariance leads to rotation correction

– Objects are aligned to their principal axes
• Distance correction leads to multiscale

– Objects should be identifiable at different scales
• Illumination invariance

– Shape features such as edges are least affected by 
illumination changes

– Normalize brightness to specific physical objects (eg: 
blood and road are set to dark, …)
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Viewing invariance for optical 
imaging systems

• Perspective invariance captures both 
requirements for rotational and distance 
invariance.

• The most effective way to deal with this is 
to apply image registration between views
– Mutual information based image registration 

can compute optimal perspective 
transformations despite brightness variations

How About Occlusion?

Occlusion introduces additional challenges
that are not easy to handle.

However, there is a general, well-established
method for dealing with occlusion:

The Hough Transform.
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Calibration between devices?

Suppose that we are forced to work with images 
acquired from different sensors. We need:

• Gamma correction for both color and grayscale 
normalization:
– Use a color corrected plates to correct for variations in 

brightness
• Use camera model to correct for coordinate 

distortions in the acquired images
• Use phantom targets to setup and verify the grains

Features: Shape-based Methods

• Require an estimate of the shape of the object.
• Shape is then summarized by its characteristics:

– Area: simply count the number of pixels
– Dimensions: length, width, height
– Curvature methods based on shape approximations
– General shape descriptions in terms of polynomial and 

Fourier basis functions
• Morphological methods

– Pattern spectra of binarized objects in terms of:
– Circular elements for isotropic methods
– Directional line segments for non-isotropic methods
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Features: Grayscale-based 
Methods (I of III)

• Based on single-pixel grayscale values
– Histogram, mean, variance, median, quartiles
– Entropy

• Spatial-methods assuming stationarity
– Co-occurrence methods estimate joint-PDFs of 

grayscale values (assumes strict stationarity)
– Spatial statistical methods: Variogram,

Covariogram and Correlorgram, Morphological 
and Markov Random Field Methods

Features: Grayscale-based 
Methods (II of III)

• Based on all-pixel grayscale values
– Assume normality:

• Active Appearance methods
• Principal Component Analysis methods (PCA, also 

related to ICA)

– Assume independent components
• Independent Component Analysis (ICA) Methods
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Features: Grayscale-based 
Methods (III of III)

• Transformation based methods:
– Discrete Fourier Transform (usually 

magnitude)
• Multiscale methods (fixed scales)

– Discrete Wavelet Transforms
• Continuous-scale methods

– Amplitude Modulation Frequency Modulation 
(AM-FM) methods

Feature Extraction PDF: 
Univariate Methods

Simplest methods:
• Non-parametric: Median, 25th and 75th quartiles

– Also removes outliers from the data
• Normal assumption: mean and variance
• Histogram method for grayscale images
• Histogram methods for different color spaces such 

as HSV (or YUV).
• Histograms for different features

– Assumes that the features are uncorrelated
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Feature Extraction PDF: 
Multivariate Methods

Non-parametric methods:
• Clustering methods
• Use of Cacoullos Windows to approximate 

the PDF (extension to Parzen)
Parametric methods:
• Assume normality: compute covariance 

matrix (eigen-decomposition)

How about classifying multiple 
objects?

A very hard problem that forces us to consider:
• Accurate, pixel-based segmentation methods that 

are generally difficult
• Block based segmentation methods:

– Assumes that objects are made up of different textures 
that can be captured in its constituent blocks

– Not very accurate, but maybe sufficient
• Non-segmentation based:

– Appealing if possible. Assumes that texture features 
can be used to differentiate between scenes containing 
different objects without identifying their location
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A Multiscale Example: 
Using AM-FM

1. Compute the output through a collection 
of bandpass filters tuned to different scales

2. Compute the mean and variance for each 
output filter AM and IF magnitude and IF 
angle

3. Combine the output mean and variance 
into a single vector

Features: Amplitude Modulation 
Frequency-Modulation Model

Model the input image as a sum of AM-FM
harmonics

where:
denotes slowly-varying amplitude
functions (low frequency components).
denotes the phase functions such
that the FM functions 
have high frequency components that do

not overlap with the low frequency
components of the amplitude functions.
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Why Multiple Components?

Multiple components are used for:
• Reconstructing images at different scales
• Reconstructing images at different channel 

filters
• Analyzing images using Fourier Analysis 

over curvilinear coordinate systems

Instantaneous Frequency

For a single phase function, we can define
the instantaneous frequency (IF) as the
Gradient of the phase: 

It allows us to model:
• Orientation variations in terms of the direction of 

the IF vectors
• Local frequency content in terms of the magnitude 

of the IF vectors

( ) ( ) ( )( ), , , ,x yx y x y x yφ φ φ∇ =
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Uniqueness of AM-FM Models
AM-FM provides a unique model for
modeling continuous-scale variations in
image and video processing. 

This is in sharp contrast to Wavelets models that
attempt to capture non-stationarity using fixed
scales. In fact, Wavelets often use AM-FM signals
to demonstrate their non-stationary power.

AM-FM attempts to model the input signals
directly.

Success of AM-FM models

AM-FM models have been applied to
several image analysis tasks:
• Shape from texture, image segmentation, 

image classification
• Perception based image and video 

compression
• Image Compression
• Motion Estimation (Fleet & Jepson)
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Separable Filterbank for 
AM-FM Analysis
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New Filterbank Versus 
Gabor Filterbank

Advantages over Gabor Filterbank:
• Fast, separable polyphase implementation 

with accurate digital frequency coverage
• Complete coverage of 2D frequency plane

– Near Perfect Reconstruction
• Accurate minimax frequency domain design 

allowing fast wavelet-like reconstructions (a 
generalization of Wavelet filterbanks)

Instantaneous Frequency Estimates

Original
Three-scale

Inst. Freq. Vectors
Two-scale

Inst. Freq. Vectors

( ),x yφ∇ ( ),x yφ∇

Instantaneous Frequency estimated using maximum filter response.
Note that it clearly captures the local orientations.
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Frequency Modulation Estimates
Original                       Two-scale FM                             Three-scale FM

( )( )cos ,x yφ ( )( )cos ,x yφ

Note how the use of more scales reveals local structure.

Amplitude Modulation Estimates
Original                       Two-scale AM                             Three-scale AM

Note how AM captures a blurry version of the input image while leaving the finer 
details to FM. Also, note that the three-scale AM is more blurry (more information is 
left to FM).

The next slide shows how AM-FM reconstructions recover the sharpness.
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AM-FM Reconstructions
Original                       Two-scale Three-scale

AM-FM Reconstructions using low-pass image and the maximum
filter responses from each scale.

AM-FM Versus Gabor for 
Content-Based Image Retrieval

Havlicek at al, Modulation Domain Texture Retrieval for
CBIR in Digital Libraries, Asilomar 2003.

• no annotation required
• retrieval using closest
feature vectors

• feature vectors included
the mean and variance of
the AM, IF orientation  
and IF magnitude from
all the channel filters.
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Summarizing a video: 
A hierarchical approach

We can summarize a video in terms of:
• Scenes

– Used in standard MPEG-2 and DVDs
– Found in your standard DVD

• Scenes are made of groups of shots
• Shots are made of a list of sequential frames

– Video coming from the same camera
• Key frames capture the “salient content”

– Found in the standard DVD for describing different scenes

Y. Rui and T.S. Huang, “Unified Framework for Video
Browsing and Retrieval”, Handbook of Image & Video Proc,
2000.
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Video Classification: Shots

Shot #1:
Produced by Camera #1

Shot #2:
Produced by Camera #2

Shot #3:
Produced by Camera #3

Note that the shots are embedded in the video.

Video classification: 
Group of Shots

Shot #2Shot #3

In this example, the group comes from shots of the same object.
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Describing Shot Activities:
The Video Mosaic Representation

In this representation, we break videos into
three components:
• Video background

– Described by few images
• Motion trajectories of independently 

moving objects
• Geometric information caused by camera 

motion

Motion Estimation

Classical optical-flow methods assume that
image intensity remains constant through time

This leads to

where  u(x, y), v(x, y)  denote the horizontal
and vertical velocity components at (x, y). 
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Classical Horn and Schunk 
formulation for motion estimation

Estimate  u(x, y), v(x, y)  that minimize

where:
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Reconstructing the trajectories

Use Kalman filtering to reconstruct trajectories
independently.

For example, for the horizontal component:

Thus, we assume independent motion
approximation from frame to frame only.
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Motion Estimation Examples

• Motion estimation examples for carotid 
plaque videos.

Motion estimation examples computed by
Sergio Murillo at the University of New
Mexico.

Non-Parametric, General Model for 
Local Motion (over a number of frames)

• All local motion can be decomposed into: 
translational + rotational + dilatational 
(dilatational = deformational)

• Motion generated by non-living objects tends to 
be translational (cars, human-made objects)

• Motion generated by living objects tends to be 
rotational (humans, cats, dogs) and deformational 
(amoeba).
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Measuring Local Motion

• Can measure rotations using:

• Can measure dilatational (deformational) 
motion using:

and also using the eigen decomposition of 
the velocity gradient tensor.

( ) ( )( ), , ,u x y v x y∇×

( ) ( )( ), , ,u x y v x y∇i

Living Versus Non-Living 
Motion

• The entropy of the pixel velocities should 
generally be higher for living objects as 
opposed to motion generated by non-living 
objects (mechanized versus biological 
motion)

Here we are referring to the 2D projected
motion, not the 3D actual motion.
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Example: Human Versus 
Non-Human Motion

• Projected human motion is approximately:
– translational body motion
– translational and periodic motion of the two 

legs and the two hands where the leg and hand 
motions are at not at the same height level

• Projected non-human motion of domestic 
animals (cats and dogs) is approximately:
– 4-leg motion where all four legs are at the 

same height level
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Conclusions

• Image analysis methods remain challenging
• Image classification methods need to 

account for variations in image acquisition
• Feature extraction must account for 

variations in the viewing conditions
• Video classification methods add motion 

estimation to the problem


