

The Z-Transform - DefinitionGiven the signal:x(n)its z-transform is $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$ For causal signals, i.e.,x(n) = 0 for n < 0 $X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$ July 2007

The Adaptive Linear Combiner (Cont.)						
e(n) = d(n) - y(n)						
$e(n) = d(n) - \sum_{i=0}^{L} b_i x(n-i)$						
$\underline{x}(n) = \begin{bmatrix} x(n) \\ x(n-1) \\ x(n-2) \\ \vdots \\ \vdots \\ x(n-L) \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ \vdots \\ b_L \end{bmatrix}$						

The Mean Square Error (MSE)					
The Error $e(n) = d(n) - \underline{x}^{T}(n)\underline{b}$					
The MSE $\in = E[e^2(n)] = E[(d(n) - y(n))^2]$					
Using vector notation, i.e.,					
$E[e^{2}(n)] = E[d^{2}(n)] - 2E[d(n)\underline{x}^{T}(n)]\underline{b} + \underline{b}^{T} E[\underline{x}(n)\underline{x}^{T}(n)]\underline{b}$					
where					
<u>p</u>	$= E[d(n)\underline{x}(n)]$ cross correlation vector				
$\underline{\mathbf{R}} = E[\underline{x}(n)\underline{x}^{T}(n)] \text{autocorrelation matrix}$					
July 2007	Copyright 2007 (c) Andreas Spanias XII-31				

MSE Solution						
Minimizing ϵ , i.e.,	$\underline{\nabla}_{\epsilon} = \frac{\partial \epsilon}{\partial \underline{b}} = \underline{0}$					
we get	$\underline{b}^{0} = \underline{R}^{-1} \underline{p}$					
$\underline{R} = \begin{bmatrix} r_{xx}(0) \\ r_{xx}(1) \\ r_{xx}(2) \\ \vdots \\ \vdots \\ r_{xx}(l) \end{bmatrix}$	$\begin{array}{ccccc} r_{xx}(1) & r_{xx}(2) & \dots \\ r_{xx}(0) & r_{xx}(1) & \dots \\ r_{xx}(1) & r_{xx}(0) & \dots \\ & & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & \ddots & \ddots \\ r_{xx}(l-1) & r_{xx}(l-2) & \dots \end{array}$	$ \begin{array}{c} r_{xx}(l) \\ r_{xx}(l-1) \\ r_{xx}(l-2) \\ \vdots \\ r_{xx}(0) \end{array} \right] $				
July 2007	Copyright 2007 (c) Andreas Spanias	XII-32				

Gradient Adaptive Filtering Algorithms

The Steepest Descent Algorithm (SDA)

The Sequential LMS AlgorithmThe LMS algorithm is due to Widrow. It is a steepest descent type of algorithm
that uses an estimate of the gradient instead of the true gradient.The SDA :
$$\underline{b}(N+1) = \underline{b}(N) - \mu \underline{\nabla}_{\in}(N)$$
The LMS : $\underline{b}(N+1) = \underline{b}(N) - \mu \underline{\hat{\nabla}}_{\in}(N)$ where $\underline{\hat{\nabla}}_{\in}(N) = -2e(N)\underline{x}(N)$ July 2007Copyright 2007 (c) Andreas SpaniasXII-38

The BLOCK LMS Algorithm $\underline{e}(k) = \underline{d}(k) - \underline{x}_{B}(k)\underline{b}(k)$ $\underline{b}(k+1) = \underline{b}(k) + 2\mu \underline{x}_{B}^{T}(k)\underline{e}(k)$ The stability and misadjustment[Clark et al] $0 < \mu < \frac{1}{\lambda_{\max}(\underline{R}_{B})} \qquad M \approx \mu tr(\underline{R}_{B})$ $\underline{R}_{B} = E[\underline{x}_{B}(k)\underline{x}_{B}^{T}(k)]$ July 2007 Copyright 2007 (c) Andreas Spanias XII-51

<section-header><text><text><text><text><text><page-footer>

THE WEIGHTED RLS (WRLS)

If the estimates of the autocorrelation matrix are modified such that a forgetting factor is introduced, i.e., current (recent) data is emphasized relative to older data then we get a modified time-recursive algorithm called the Weighted RLS (WRLS).

$$\frac{\hat{R}^{w}(N+1) = \gamma \hat{R}^{w}(N) + \underline{x} (N+1)\underline{x}^{T}(N+1)}{\underline{p}^{w}(N+1) = \gamma \underline{p}^{w} (N) + \underline{d} (N+1)x(N+1)}$$

$$\left[\frac{\hat{R}^{w}_{m}(N+1)}{\underline{p}^{-1}} = \gamma^{-1} \left[\left[\frac{\hat{R}^{w}(N)}{\underline{p}^{-1}} - \frac{\left[\left[\frac{\hat{R}^{w}(N)}{\underline{p}^{-1}} + \frac{1}{2} (N) \right] \left[\frac{\underline{x}^{T}(N)}{\underline{p}^{w}(N)} \right]^{-1} \right]}{\gamma + \underline{x}^{T}(N) \left[\frac{\hat{R}^{w}(N)}{\underline{p}^{-1}} + \frac{1}{2} (N) \right]} \right]$$
July 2007 Copyright 2007 (c) Andreas Spanias XII-64

The error equation for the EEM is given by

$$e(n) = d(n) + \sum_{i=1}^{M} a_i d(n-i) - \sum_{i=0}^{L} b_i x(n-i)$$

Let us define the following (L+M+1) x 1 vectors
$$\underline{u}(n) = [-x(n) - x(n-1) ... - x(n-l) d(n-1) d(n-2) ... x(d-m)]$$

and
$$\underline{c}(n) = [b_0(n) \ b_1(n-1) ... b_L(n) a_1(n) a_2(n) ... a_M(n)]$$

$$e(n) = d(n) + \underline{u}^{T}(n)\underline{c}(n)$$
Copyright 2007 (c) Andreas Spanias

July 2007

17

XII-68

Copyright 2007 (c) Andreas Spanias

XII-73

XII-75

REFERENCES

DIGITAL SIGNAL PROCESSING

July 2007 C	opyright 2007 (c) Andreas Spanias	XII-74		
•Steven Smith, "The Scientist and Engineer's Guide to Digital Signal Processing," 2nd Ed., California Technical Publishing, San Diego California, 1999 (you can download at DSPguide com)				
Johnson, "Introduction to Digital Signal Processing," Prentice Hall, 1988				
•R.A. Gabel and R.A. Roberts, "Signals and Linear Systems," Wiley, 1988				
•D.J. DeFatta, J.G. Lucas, W.S. Hodgkiss, "Digital Signal Processing: A System Design Approach," Wiley, 1988				
•R.W. Ramirez, "the FFT Fundamentals and •Englewood Cliffs, NJ 1985.	Concepts," Prentice-Hall, INC.			
•McClellan and Schaffer, "DSP First," Prent	tice Hall, 1997			
•Oppenheim and Schaffer, "Discrete-Time S	Signal Processing, Ed. 2" Prentice Hall, 1999			
•Proakis and Manolakis, "Introduction to Di	gital Signal Processing," Macmillan,1988			
•R. Crochiere and L. Rabiner, Multirate Dig	ital Signal Processing, Prentice Hall, 1983.			
•A. Oppenheim and R. Schafer, Digital Sig	nal Processing, Prentice Hall, Englewood Cliffs, 1975.			

REFERENCES (2)

SPECTRAL ESTIMATION

July 2007

- S.L. Marple, Digital Spectral Analysis with Applications, Prentice Hall, 1987.
- · J. Burg, "Maximum Entropy Spectral Analysis," Proc. 37th Meeting of the Society of Exploration Geophysicists, 1967.
- C. Nikias and M. Raghuveer, "Bispectrum Estimation: A Digital Signal Processing Framework," Proc. IEEE, No. 75, pp. 869-891, July 1987.

Stoica and Moses, Introduction to Spectral Analysis, Prentice Hall 2nd Ed 2004

- ADAPTIVE FILTERS
- · Haykin, Adaptive Filter Theorty, Prentice Hall, 3rd Ed, 1997
- Cowan and Grant, "Adaptive Filters," Prentice Hall, 1985
- · Widrow and Stearns, "Adaptive Signal Processing," Prentice Hall, 1985
- S.J. Elliott, I.M. Stothers, and P.A. Nelson, "A Multiple Error LMS Algorithm and its Application to the Active Control of Noise and Vibration," IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-35 (10), 1987, pp. 1423-1432.
- D.R. Morgan, "An analysis of Multiple Correlation Cancellation Loops with a Filter in the Auxiliary Path," IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-28(4), pp. 454-467, 1980.
- · J. Treichler, C. Johnson, and Larimore, Theory and Design of Adaptive Filters, Prentice Hall 2001

July 2007 Copyright 2007 (c) Andreas Spanias

Other Adaptive Signal Processing References

- Other Adaptive Signal Processing References
 [Clar81] G. Clark, S. Mitra, and S. Parker, "Block Implementation of Adaptive Digital Filters," IEEE Trans. on NSSP. 29, pp. 744-752, June 1981.
 [Cowa8] C. Cowan and P. Crant, Adaptive Filters, Prentice Hall, 1985.
 [Dotself] M. Deisher and A. S. Spanias, "Practical Considerations in the Implementation Frequency-Domain Adaptive Noise Cancellation," IEEE Trans. on Circuits and Systems, Part II: Analog and Digital Signal Processing, vol. 41, No. 2, pp. 164-168, Feb. 1994.
 [Elio87] S.J. Eliott, I.M. Stothers, and P.A. Nelson, "A Multiple Error LMS Algorithm and its Application to the Active Control of Noise and Vibration," IEEE Trans. Acoustics, Speech, and Signal Processing, VSI-1434, 1987.
 [Grif7] L.J. Griffliths, "Tapid Measurements of Digital Instantaneous Prequency," IEEE Trans. on Trans. Acoustics, Speech, and Signal Processing, Vol.2, pp. 207-222, Apr. 1975.
 [Hikk97] S. Haykin, Adaptive Filter Theory, Prentice Hall, 37d E4, 1997.
 [Mikk87] W. Mikhael and A. Spanias, "Comparison of Several Prequency-Domain LMS Algorithms," IEEE Trans. on Circuits and Systems, Vol. CAS-34, No. 5, pp. 586-589, May 1987.
 [Mikk87] W. Mikhael and F. Wu, "Fast Algorithms for Block TIR Adaptive Digital Filtering," IEEE Trans. on Circuits and Systems, CAS-34, p. 1152, Oct. 1987.
 [Mikk87] W. Mikhael and F. Supatis, Simparison of Several RIA Adaptive Digital Filtering, Stepectral Analysis," IEEE Transactions on Signal Decetaring Hotel Active Sound Reduction, Noise Control Engineering Journal, J44 (6), pp. 281-293, Nov. 1996.
 [Spara9] A.S. Spanias, "A Block Time and Frequency Modified Covariance Algorithms for Spectral Analysis," IEEE Transactions on Signal Processing, Vol. 141, no. 11, pp. 3138-3153, Nov. 1998.
 [Wird73] B. Sudravet at, "The Complex LMA Algorithm, Prov. IEEE, Vol. 63, pp. 197-200, 1975.
 [Wird78] B. Widrov et al, :
- .
- •
- •
- .
- .
- •

Copyright 2007 (c) Andreas Spanias

- •
- •
- . [Widr85] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice Hall, 1985.

July 2007

XII-76