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Background in DSP
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IIR  Digital Filter Structure
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FIR Digital Filter Structure
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Two i/p-o/p  Equations for Digital Filters

x(n)
h(n)

y(n)

One can compute the output using the convolution sum
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or by using the difference equation
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Remark:  The impulse response h(n) can be determined by solving 
the difference equation.  
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From the Laplace Transform to the Z-Transform
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The Z-Transform - Definition

Given the signal: )(nx

its z-transform is X z x n z n
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The Transfer Function 

The transfer function H(z) is defined as:
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Note that feedback
terms are in the 
denominator
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The Frequency Response Function

The transfer function is
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Poles and Zeros and Stability

For stability of causal systems all the poles must be inside the
unit circle, that is

1<ip for    all    i = 1, 2, . . . , M
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Frequency Responses
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Random Signal Processing - Some Definitions
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The mean  is defined as:

Statistical expectation; for ergodic
signals it is computed as a time average

The variance σ µ µ µx x x xE x n x n E x n2 2 2= − − = −[( ( ) )( ( ) )] [ ( )]

The variance is a measure of
dispersion from the mean
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The Autocorrelation

r m E x n m x n
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Basic Properties: )()0()()( mrrmrmr xxxxxxxx ≥=−

uncorrelated i/p
(e.g., white noise)

Digital
Filter

correlated o/p
(e.g., colored noise)

The filter acts as a correlator

The autocorrelation is a measure of predictability of the signal,
i.e., a correlated signal would be one whose future values can

be predicted from past values
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Mean, variance, and autocorrelation with J-DSP

July 2007 Copyright 2007 (c) Andreas Spanias XII-15

The Cross-correlation and the Cross-covariance

( ) [ ( ) ( )] ( ) ( )xy xy yxr m E x n m y n r m r m= + = −

The cross-correlation  is a measure of similarity of two signals.

Correlated
signals

x

y
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The Cross-correlation of the Output Process
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Digital
Filter
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Channel

TX RX

x y

Cross Correlation Application in Channel Estimation

The channel is often modeled by a transfer function that can be 
determined by measuring the statistics of the signal at the receiver.  
Hence, by sending a training “white” sequence  ‘x’   a cross-
correlation ryx is measured and from that a channel impulse response
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Cross Correlation  Application in Channel Estimation (2)
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Calculating Autocorrelations

There are two kinds of autocorrelation estimates, i.e.,

Given an N-point data record ( ){ }1,...,2,1,0, −= Nnnx
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a.  Unbiased Estimates b.  Biased Estimates

Preferred in 
most applications
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ADAPTIVE  FILTERING AND ITS 
APPLICATIONS
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Adaptive System Identification - Adaptive Filtering
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The idea is to make the filter B(z) behave like H(z)

To do this we try to get B(z) to give the same output as H(z)

System identification arises in many applications, such as
adaptive noise and echo cancellation, channel equalization, active sound reduction, 
smart antennas, etc
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Adaptive System Identification

• The key problems in adaptive system identification lie in the 
choice of the adaptive filtering algorithm. In particular, the 
following issues are of concern

• presence of persistent and rich in frequency input (how good 
is the environment)

• adaptation speed (choice of adaptation gain)

• complexity of the algorithm (real time issues)

• quality of the final filter estimate (misadjustment)
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Adaptive Noise Cancellation
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mic. primary

mic.secondary 

noise
source

B(z) models the 
acoustic path (H(z))
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Active Noise Cancellation in Mufflers and Air Ducts

Filter adapts such that speaker generates “anti”-noise to 
cancel the noise and make e(n) small

Input noise

Speaker 1

Speaker 2

Input micro. Error micro.

x(n) e(n)

y(n)

Adaptive Filter

Adaptive filter 
minimizes e(n)

e(n)

“anti”-noise
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Handset

Downlink Speech

Uplink Speech

Echo Path

Mic

Speaker

Near-end speech

Acoustic  Echo in Telephones

Ref: “Acoustic Echo Control: An Application of Very-High-Order Adaptive Filters,”
IEEE Signal Processing Magazine, July 1999
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x(n)

B(z)

s(n)y(n)

∑
e(n)

The Adaptive Echo Canceller

x - reference signal 
s - reflected signal
e - error

Echo cancellation is achieved by subtracting
a replica of the echo from the reflected signal s(n)
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Adaptive Signal Processing

null 
co-channel 

user

null 
multipath

Smart Antennas & Spatio-Temporal DSP

Select
 user

Smart (Adaptive) Antennas

July 2007 Copyright 2007 (c) Andreas Spanias XII-28

T T

a0

a1

a

al

l-1

+

+
+

+

T T

a0

a1

a

al

l-1

+

+
+

+

T T

a0

a1

a

al

l-1

+

+
+

+

T T

a0

a1

a

al

l-1

+

+
+

+

+

+
+

+

Antenna Beamforming
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The Adaptive Linear Combiner
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This is essentially an FIR filter
with adjustable coefficients

y(n) e(n)

In this system
the filter coefficients 
are adjusted such that
e(n) is minimized
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The Adaptive Linear Combiner  (Cont.)
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( ) ( ) ( )bnxndne T−=

The Mean Square Error  (MSE)

Using vector notation, i.e.,

( )[ ] ( ) ( )( )[ ]22 nyndEneE −=∈=

( )[ ] ( )[ ] ( ) ( )[ ] ( ) ( )[ ]b xE b   d2E  -  22 nxnbnxnndEneE TTT +=

where

( ) ( )[ ] n  vectorcorrelatio  cross      nxndEp =

( ) ( )[ ] matrixation  autocorrel     R nxnxE T=

The Error

The MSE
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MSE  Solution

Minimizing ∈, i.e.,
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Remarks on the MSE Solution

Which implies that the error becomes uncorrelated with the inputs.  
If the input  is white noise then

IR x
2σ= 20 / xpb σ=

If R is a 2x2 matrix then the MSE can be described in terms of ellipses corresponding to 
constant MSE contours.  MSE is minimum at the center of the ellipses.

.
min∈

1∈
2∈
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Gradient Adaptive Filtering Algorithms

The Steepest Descent Algorithm   (SDA)

( ) ( ) ( )NNbNb ∈∇−=+ µ1

the SDA converges if ( )Rmax

10
λ

µ <<

The LMS is a steepest-descent algorithm where the gradient is calculated 
only from the present error sample

. ( )N∈∇− µ
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The Newton Algorithm  (NA)

the NA converges if

10 << µ

( ) ( ) ( )NRNbNb ∈
− ∇−=+ 11 µ

.
( )NR ∈

− ∇− 1µ

NA is faster than SDA in terms of convergence but requires a matrix inverse in 
every iteration
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Excess Mean Square Error and Misadjustment

This is defined at steady-state, i.e., after the adaptive transients vanish.  The Excess 
MSE is due to noise in the adaptive process.  The Excess MSE provides a measure of 

the difference between the actual and the optimal performance over time.

The misadjustment M   is normalized measure of the difference between 
the actual and the optimal performance.

min

MSE 
∈

=
ExcessM

( )[ ]minkE    MSE ∈−∈=Excess
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THE SEQUENTIAL AND 
THE BLOCK LMS ALGORITHMS

July 2007 Copyright 2007 (c) Andreas Spanias XII-38

The  LMS  algorithm is due to Widrow.  It is a steepest descent type of algorithm 
that uses an estimate of the gradient instead of the true gradient.

The Sequential LMS Algorithm

The SDA :

The LMS :

where

( ) ( ) ( )NNbNb ∈∇−=+ µ1

( ) ( ) ( )NNbNb ∈∇−=+ ˆ1 µ

( ) ( ) ( )NxNeN 2ˆ −=∇∈
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Convergence of the LMS

It can be shown that

if

A more conservative convergence condition

( ) ( ) ( ) ( )NxNeNbNb µ21 +=+

( )[ ]{ } 0lim bNbE
N

=
∞→

max

10
λ

µ <<

( )rtr
10 << µ
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Simulations LMS
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Misadjustment of the LMS

It can be shown [Windrow and Stearns] that

Longest Learning time constant

( )rM tr µ≈

min4
1

µλ
=mseT
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Simulations LMS – Misadjustment and Excess MSE
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The LMS / Newton Algorithm

The stability condition

( ) ( ) ( )NrNbNb ave ∈
− ∇−=+ ˆ1 1µλ

max

10
λ

µ <<

( )rtr  M µ≈
ave

mseT
µλ4
1

=
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Adaptive Filter Simulation Program (1) 

Example 2.26 (file name: dsp2_26.m)   Page 1
% Compute PSD from LPC - Ex 2.26
clear
N=500; % total number of iterations
x=randn(N,1);%white Gaussian noise generated
Nf=256;
theta=[(2*pi/Nf).*[0:Nf-1]]; % precompute the set of discrete frequencies
L=2; %order of adaptive filter L=no. of coeff.-1 
bhat(1:L+1)=0% initialized adaptive filter coefficients
mu=0.01 ;% step size

%********************************************************

% Fixed "unknown" filter
b=[1 1 1];
a=[1];
d = filter(b,a,x);% filter output

% Form output of the adaptive filter and calculate error

H=freqz(b,a,theta); % compute the frequency response of H(z)
jj=1;%initialize counter

%********************************************************
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Adaptive Filter Simulation Program (2) 

Example 2.26 (file name: dsp2_26.m)   Page 2

for n=L+1:N
y(n)=0;%initialize 
for l=1:L+1

y(n)=y(n)+bhat(l)*x(n-l+1);%compute output of adaptive filter
end
e(n)=d(n)-y(n);%compute error

for l=1:L+1
bhat(l)=bhat(l)+2*mu*e(n)*x(n-l+1);%adapt filter coefficients

end
jj=jj+1;%counter for plotting every 10 iterations

if jj==10; %plot frequency responses every 10 iterations

Hh=freqz(bhat,1,theta); % compute the frequency response (Hh(z))
plot(theta,20*log10(abs(Hh)),theta,20*log10(abs(H))); % plot PSDs
xlabel('frequency index')
ylabel('Magnitude in (dB)')
jj=0;
pause;% press space bar to see the next frequency reponse

end
end
plot(10*log10(e.*e+0.00000001));%  plot sample mse vs iterations
ylabel('MSE (dB)')
xlabel('Iteration')
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Adaptive Filter Simulation Program (3)

The simulation program in gives the MSE curve as a function of iteration
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Vectorized Simulation of Adaptive Filter 

Example 2.26a (file name: dsp2_26a.m)

for n=L+1:N
xv=x(n:-1:n-L);
yh=bhat*xv; %computer o/p of adaptive filter
e(n)=d(n)-yh;   %compute error
bhat=bhat+2*mu*e(n)*xv';%adapt filter coefficients

jj=jj+1;%counter for plotting every 10 iterations

if jj==10; %plot frequency responses every 10 iterations

Hh=freqz(bhat,1,theta); % compute the frequency response (Hh(z))
plot(theta,20*log10(abs(Hh)),theta,20*log10(abs(H))); % plot PSDs
xlabel('frequency index')
ylabel('Magnitude in (dB)')
jj=0;
pause;% press space bar to see the next frequency response

end
end
plot(10*log10(e.*e+0.00000001));%  plot sample mse vs iterations
ylabel('MSE (dB)')
xlabel('Iteration')
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Block of
desired signals
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input signals

Block
FIR Filter

Block LMS
Algorithm
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Block Algorithms (Cont.)

The block LMS algorithm, as opposed to the sequential LMS 
algorithm, minimizes a block (vector) of errors:
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Block Algorithms   (Cont.)

The output vector can be written as
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The BLOCK LMS Algorithm

( ) ( ) ( ) ( )kekxkbkb T
Bµ21 +=+

The stability and misadjustment[Clark et al]

( )BRmax

10
λ

µ << ( )BRtrM µ≈

( ) ( ) ( ) ( )kbkxkdke B−=

( ) ( )][ kxkxER B
T
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The Frequency Domain Adaptive Filter (FDAF)

This is due to [Dentino et al]

)(nx d(n)
FFTFFT

∑
( )0Xk
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− +
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The (FDAF) (Cont.)

The coefficient update expression for the FDAF is given by

The stability condition is

or

( ) ( ) ( ) ( )kEkXkBkB H
dµ21 +=+

( )dRmax

10
λ

µ <<

( )[ ]( )2max
10

iXE ki

<< µ

( ) ( ) ( ) ( )kBkXkDkE d−=
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Remarks on the FDAF

The use of the FFT for fast convolution is associated with periodic 
(circular) as opposed to linear convolution. 

The optimal solution for the FDAF is not the same as that of the LMS or 
the BLMS.  In order to see the differences between the two solutions one 
has to examine the time domain equivalent of the FDAF.  

The FDAF is a block frequency domain algorithm associated with a
block time-domain circulant matrix.   
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The FLMS Algorithm

The FLMS algorithm is a frequency domain algorithm which is 
equivalent to the BLMS algorithm. 

The FLMS uses 2N-point (augmented) FFTs to implement an Nth 
order BLMS adaptive filter in the frequency domain.   

All the convolutions are done properly in the frequency domain 
using the overlap and save technique [Oppenheim].  

In addition, the gradient is constrained such that it corresponds to 
that of the BLMS.  
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The FLMS Algorithm (2)
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The Choice of the Convergence factor  µ

Much work has been done in choosing the convergence factor or the 
step size of gradient algorithms.   

A procedure for optimizing the convergence factors was proposed by 
[Mikhael and Yassa].   Time-varying convergence factors for the 
LMS and the BLMS were proposed by [Mikhael and Wu].   

Time-varying convergence factors for frequency domain algorithms 
were porpsed by [Mikhael and Spanias].  

Normalized convergence factors were also proposed by [Mansour and 
Gray].  

July 2007 Copyright 2007 (c) Andreas Spanias XII-58

The Choice of the Convergence factor  µ (Cont.)

It can be shown [Yassa] that

( ) ( )
( ) ( )kRk

kk
T

T

k ∇∇
∇∇

=
2

µ

Choice of  µ for the LMS  (Cont.)
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Choice of  µ for the BLMS

The last two equations describe the Optimum Block Algorithm 
(OBA)

( ) ( ) ( ) ( )kekxkbkb T
Bkµ21 −=+

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )kekxkxkxkxke

kekxkxke
T
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T
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T

T
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T

k 2
=µ
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Choice of  µ for the FDAF

( ) ( ) ( ) ( )kEkXkBkB H
dkµ21 −=+
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Another frequency-depended gain is given below



16

July 2007 Copyright 2007 (c) Andreas Spanias XII-61

Choice of  µ for the FDAF and FLMS 

In addition an individual µ for each coefficient was proposed by 
[Mikhael and Spanias].   This is given by
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( ) 22

1
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i
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THE DATA STRUCTURE OF THE AUTOCORRELATION 
MATRIX AND THE RLS  
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THE RLS

The solution using k samples is

( ) ( ) ( )NpNRNb ˆˆ 1−=

The  (k+1)th sample that enters the process.  A new solution is

( ) ( ) ( )1ˆ1ˆ1 1 ++=+ − NpNRNb
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THE WEIGHTED RLS (WRLS)

( ) ( ) ( ) ( )11ˆ1ˆ +++=+ NxNxNRNR Tww
γ

( ) ( ) ( ) ( )111 +++=+ NxNdNpNp ww γ

If the estimates of the autocorrelation matrix are modified such that a forgetting 
factor is introduced, i.e., current (recent) data is emphasized relative to older data 
then we get a modified time-recursive algorithm called the Weighted RLS (WRLS).
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Simulations RLS vs LMS
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IIR Adaptive Filtering

Inherent problems in IIR filtering is the stability of the filter 
during adaptation and the non-linearity of the optimization 
problem.  There are basically two general techniques for adaptive 
filtering, namely, the equation error model and the output error
model.  The equation error model involves linear optimization 
and is stable during adaptation.  The output error model involves 
non-linear optimization.  Output error models are discussed by 
[Shunk].  In the following we describe the equation error model.  
The structure  of the equation error model is given below:

July 2007 Copyright 2007 (c) Andreas Spanias XII-67

IIR Adaptive Filtering  (Cont.)

∑

+

−

( )zE( )zX

( )zH
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The Equation Error Model (EEM)

The error equation for the EEM is given by

Let us define the following ( L+M+1) x 1 vectors

( ) ( ) ( ) ( )inxbindandne i

L

i
i
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i

−−−+= ∑∑
== 01
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The Equation Error Model  (Cont.)

The MSE

Minimizing

we get

0=
∂
∈∂
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prc 10 −=
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The LMS Algorithm for the EEM

where

Stable if

( ) ( ) ( )kkckc ∈∇−=+ ˆ1 µ

( ) ( ) ( )kukek 2ˆ −=∇∈
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The LMS Algorithm for Linear Prediction
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Web Site for
JDSP PROGRAM

•The  JDSP  program can be found at  

http://jdsp.asu.edu
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