

Classification of clusters – according to 4 orthogonal attributes

Packaging:

Compact cluster - nodes are packaged in 1 or more racks in a room, nodes are not attached to peripherals, called headless workstations, utilizes a high-bandwidth, low-latency communication network *Slack cluster* – nodes are attached to their peripherals i.e. they are complete SMP, workstations, and PCs, they may be located in different rooms, buildings, geographically remote regions

PARALLEL PROGRAMMING

High performance quality and efficient implementations of parallel algorithms can be developed only if specific parallelism profiling and software tuning tools are utilized in order to monitor communication transactions execution, resources allocation, memory contents and data structures, inter-processors communications, static and dynamic processes and threads allocation.
Usually the parallel algorithm implementations are bigbly dependent on the output of the parallelism of the output of the parallelism of the output of the outpu

highly dependant on the system architecture to be executed on and thus the migration form one parallel computer platform to another is not straightforward.

71

S CBOROVSKA

ISOPERFORMANCE MODELS

ISOEFFICIENCY – characterizes system scalability E=f(W, n); if we fix the efficiency to some constant (e.g., 50%) and solve the efficiency equation for W, the resulting function is called the *isoefficiency function* of the system [Grama]

The isoefficiency metric provides a useful tool to predict the required workload growth rate with respect to the machine size increase [Kumar]

77

BOROVSKA

Parameter	Taxonomy	Definition		
T_s	Time for sequential processing	$T_{s} = \sum_{i=1}^{k} T_{s}(i)$		
T_n	Time for parallel processing	$T_n = \sum_{i=1}^{k} \frac{T_i(i)}{\min(\mathbf{I})} + T_0$		
	(n processors)	$i=1$ IIIII(L_i)		
	Critical path	$T_{\infty} = \sum_{i=1}^{k} \frac{T_{s}(i)}{L_{i}}$		
P_n	Parallel speed	$P_n = \frac{T}{T_n}$		
S _n	Speedup	$\frac{S_n = \frac{I}{T_n}}{T_n}$		
E_n	Efficiency	$E_n = \frac{1}{nT_n}$		
	Resource utilization	$U_n = \frac{nP_{peak}}{nP_{peak}}$		
	System overhead	$T_{0,av} = T_{par} + T_{inter}$		
L_{av}	Average level of parallelism	$\frac{L_{av}}{T_{\infty}} = \frac{1}{T_{\infty}}$		
	Average system overhead	$T_{0,av} = \frac{W}{W}$		
	Average granularity	$G_{av} = \overline{T_{o}}$		

Memetic algorithms are forms of genetic algorithms, that are combined with local search techniques, like simulated annealing

CBOROVSKA

97

			ist oj	Елре	inne	IUS	
	Experiment #	Number of generations	Number of populations	Population size	Migration size	Mutation rate	Exchange period
	1	200	200	1000	4	0.05/0.02/0.01	20
	2	200	240	1200	5	0.05/0.02/0.01	20
	3	200	280	1400	6	0.05/0.02/0.01	20
	4	400	200	1000	4	0.05/0.02/0.01	20
	5	400	240	1200	5	0.05/0.02/0.01	20
	6	400	280	1400	6	0.05/0.02/0.01	20
-	7	600	200	1000	4	0.05/0.02/0.01	20
	8	600	240	1200	5	0.05/0.02/0.01	20
	9	600	280	1400	6	0.05/0.02/0.01	20

Experimental variable genetic parameters						
#Processors	1	2	3	4	5	
#Cities	Population size	Subpopulation size				#Migrants
100	120	60	40	30	24	4
200	240	120	80	60	48	9
300	360	180	120	90	72	14
400	480	240	160	120	96	19
500	600	300	200	150	120	24
600	720	360	240	180	144	28

	Para	llel Mi	itation Strategies	5
Mutation	Description	Abbreviation	Description	μ
	Fixed mutation rate	Fmr0.01	Fixed mutation rate µ =0.01	μ =0.01
		Fmr0.05	Fixed mutation rate µ =0.05	μ =0.05
fmr		Fmr0.1	Fixed mutation rate µ =0.1	μ =0.1
		Frm0.15	Fixed mutation rate µ =0.15	μ =0.15
		Fmr0.2	Fixed mutation rate µ =0.2	μ =0.2
	Variable mutation rate for each generation	vmrginc0.001	Variable mutation rate for each generation increasing $\mu\text{+}$ =0.001; 0.01 $\!\!\!\leq\!\!\mu\!\!\leq\!\!0.2$	μ+ =0.001; 0.01≤μ≤0
vmrg		vmrgdec0.001	Variable mutation rate for each generation decreasing μ ==0.001; 0.01 $\!\!\leq\!\!\mu\!\!\leq\!\!0.2$	μ −=0.001; 0.01≤μ≤0
	nr Parallel pvn variable mutation rate different for each process	pvmr0.05	$ \begin{array}{l} \mbox{Parallel variable mutation rate for each process has} \\ \mbox{different fixed mutation rate as: μ =0.2 \rightarrow P0, μ =0.15 \rightarrow P1, μ =0.1 \rightarrow P2, μ =0.05 \rightarrow P3 and μ =0.01 \rightarrow P4 $ \end{array} $	0.01≤µ≤0.2
pvmr		pvmrg±0.001	$\begin{array}{l} \mbox{Parallel variable mutation rate for each generation} \\ \mbox{on; for even processes} \rightarrow \mbox{orcesses} \rightarrow \mbox{orcessesses} \rightarrow \mbox{orcessesses} \rightarrow \mbox{orcessesses} \rightarrow \mbox{orcessessesses} \rightarrow \mbox{orcessessesses} \rightarrow orcessessessessessessessessessessessessess$	0.01≤µ≤0.2

