
1

1

PARALLEL
METAHEURISTICS

PLAMENKA BOROVSKA
COMPUTER SYSTEMS DEPT.

TECHNICAL UNIVERSITY OF SOFIA

©BOROVSKA

European Thematic Network 114046-CP-1-BG-ERASMUS-TN

DOCTORAL EDUCATION IN COMPUTING (DEC)

Summer School on Intelligent Systems July, 2-6, 2007

www.cs.ucy.ac.cy/sums

2

THE CHALLENGE

As the amount of data in our world grows
tremendously and doubles every 24 months
— the data equivalent of Moore’s Law, there
is a new challenge facing IT community: vast
quantities of data will require new computing
architectures in order to be processed.
To ensure that today’s computers are able to
handle future applications, they will need to
increase their processing capabilities at a rate
faster than the growth of data.

©BOROVSKA

2

3

REQUIREMENTS&EXPECTATIONS

GREATER
PERFORMANCE
LARGER MEMORY
CAPACITY
INTELLIGENCE

©BOROVSKA

4

INNOVATIVE TECHNOLOGIES

MULTI-CORE PROCESSORS
(MULTITHREADING)
SCALABLE PARALLEL
COMPUTER ARCHITECTURES

IEEE Technical Committee on Scalable
Computing www.ieeetfcc.org

CLUSTER COMPUTING
IEEE Task Force on Cluster Computing

www.clustercomp.org©BOROVSKA

3

5

©BOROVSKA

FUNDAMENTAL ASPECTS OF
PARALLEL COMPUTING

PARALLEL ALGORITHMS
AND APPLICATIONS

PARALLEL
PROGRAMMING

PARALLEL
ARCHITECTURES

6

Computer clusters
www.topclusters.org

Clusters of various architectural styles have become
popular nowadays based on hyperthreading and
multi-core processors.
Consequently, shared memory parallel programming
models are emerging as a serious competitive
environment to message passing.
Hybrid (multi-level) parallel programming model is
based on a combination of the two approaches -
high-level parallelism afforded by message-passing
and low-level parallelism used for loop level
multithreaded parallelism.

©BOROVSKA

4

7

Computer Cluster Google

8

Blue Gene

5

9

IBM ASCI White

10

IBM ASCI Purple

6

11

Packaging:
Compact cluster - nodes are packaged in 1 or more
racks in a room, nodes are not attached to
peripherals, called headless workstations, utilizes a
high-bandwidth, low-latency communication network
Slack cluster – nodes are attached to their
peripherals i.e. they are complete SMP,
workstations, and PCs, they may be located in
different rooms, buildings, geographically remote
regions©

B
O

R
O

VS
K

A

Classification of clusters – according
to 4 orthogonal attributes

12

Control
Centralized – all the nodes are owned, controlled , managed
& administered by a central operator (normally compact
cluster)
Decentralized – the nodes have individual owners ; the owner
can reconfigure, upgrade or even shutdown the workstation
at any time
A slack cluster can be either controlled or managed in a

centralized or decentralized fashion.

Homogeneity
a homogeneous cluster – all nodes adopt the same platform
a heterogeneous cluster – nodes of different platforms,
process migration not feasible

©BOROVSKA

Classification of clusters

7

13

Security
Exposed intracluster communication – easy to
implement, but an outside machine can access the
communication paths, and thus individual nodes,
using standard protocols (i.e., TCP/IP)

Disadvantages:
Intracluster communication is not secure
Outside communications may disrupt intracluster
communications in an unpredictable fashion
Standard communication protocols tend to have high
overhead
Enclosed intracluster communication – shielded from
the outside world, a disadvantage is the lack of a
standard for efficient, enclosed intracluster
communication

©BOROVSKA

14

Dedicated cluster
Typically installed in a deskside rack in a central
computer room
Typically homogeneously configured with the same
type of nodes
Managed by a single administrator group
Typically accessed via a front-end system
Used as substitute for traditional mainframes or
supercomputers
Installed, used & administered as a single machine
Executes both interactive and batch jobs
Enhanced throughput & reduced response time

©
B

O
R

O
VS

K
A

Dedicated Versus Enterprise Clusters

8

15

Mainly used to utilize idle resources in the
nodes
Each node is usually a SMP, workstation, or
PC, with all peripherals attached
The nodes are individually owned by multiple
owners; the owner’s local jobs have higher
priority than enterprise jobs
The nodes are typically geographically
distributed
Configured with heterogeneous computer
nodes, connected through a low-cost Ethernet

©
B

O
R

O
VS

K
A

Enterprise cluster

16

CLUSTER DESIGN ISSUES

Availability support – lots of redundancy of processors,
memories, disks, I/O devices, networks, operating system
images, etc.
Single system image – by clustering many workstations, we
get a single system that is equivalent to one huge
workstation, a megastation
Job management – batching, load balancing, parallel
processing
Efficient communication – often use commodity networks
(Ethernet, ATM) with standard communication protocols (high
overheads), long wires imply larger latency, clock skew &
cross-talking problems

©
B

O
R

O
VS

K
A

9

17

AVAILABILITY SUPPORT FOR CLUSTERING

RAS – RELIABILITY, AVAILABILITY,
SERVICEABILITY

Reliability – measures how long a system can
operate without a breakdown
Availability – indicates the percentage of time
that a system is available to the user (the
percentage of system uptime)
Serviceability – how easy it is to service the
system, including hardware & software
maintenance, repair, upgrade, etc.

©BOROVSKA

18

The availability concept

The operate-repair cycle of a computer
system

A system’s reliability is measured by the
mean time to failure MTTF, which is the
average time of operation before the
system (or a component) fails
The metric for serviceability is the mean
time to repair MTTR (the av. time to repair
the system)
Availability = MTTF/(MTTF+MTTR)©

B
O

R
O

VS
K

A

10

19

Single points of failure in clusters

Single points of failure –
hardware or software
components whose
failure will bring down the
entire system

©BOROVSKA

20

5 possible single points of failure: (1)LAN network;
(2)LAN adapter of the server node, (3)server;

(4)SCSI bus; (5)External disk©BOROVSKA

Single points of failure in clusters

11

21

©BOROVSKA

Duplication of cluster resources to eliminate all
single points of failure

22

Redundant components configurations

Hot Standby – a primary component provides
service, a redundant backup component is ready
(hot) to take over when the primary fails
(economical design – one standby component to
back up multiple primary components)
Mutual Takeover – all components are primary; 1
component fails – its workload is distributed to other
components
Fault-tolerant – N components deliver the
performance of only 1 component

©BOROVSKA

12

23

CLUSTER PRODUCTS

Over 100 000 computer clusters are in use
worldwide
These include both commercial products and
custom-designed clusters
Nodes are mostly PCs, workstations, & SMP
servers
The cluster sizes are mostly in the order of
tens; only a few clusters exceed 100 nodes
Most clusters use commodity networks such as
Fast or Gigabit Ethernet, FDDI rings, ATM or
Myrinet switches besides regular LAN
connections among the nodes

©BOROVSKA

24

Cluster of SMP Servers

A visible industrial trend is to cluster a
number of homogeneous SMP

servers together as an integrated
superserver

©BOROVSKA

13

25

SYSTEM AREA
NETWORKS

FOR PARALLEL
COMPUTERS

©BOROVSKA

26

GOALS

The job of an interconnection network in a
parallel machine is to transfer information
from any source node to any desired
destination node, in support of the network
transactions that are used to realize the
programming model. It should accomplish
this task with as small a latency as possible,
and it should allow a large number of such
transfers to take place concurrently. It
should be inexpensive relative to the cost of
the rest of the machine.

©BOROVSKA

14

27

©BOROVSKA

28

In order to overcome the limitations of the contemporary I/O
system, in 2000 the Trade association InfiniBand, uniting 7

industrial leaders Compaq, Dell, Hewlett-Packard, IBM, Intel,
Microsoft и Sun Microsystems created the specification of the

switch architecture InfiniBand.

©BOROVSKA

15

29

©BOROVSKA

30

16

31

32

17

33

34

18

35

36

©
B

O
R

O
VS

K
A

Information fragmentation and encapsulationInformation fragmentation and encapsulation

19

37

Communication Performance
Simured (University of Barcelona)

http://tapec.uv.es/simured/index_en.php

©BOROVSKA

Simured.exe

38

Challenges of parallel computing

The transition from sequential process of
calculation to parallel computations on a
parallel computer platform introduces several
specifics at different stages of parallel
software design and implementation.
The latter are in close connection with the
fundamental differences between sequential
and parallel computations and specifics
imposed by the development and use of
parallel algorithms and parallel architectures.

©BOROVSKA

20

39

Parallel programming

Parallel programming is a more complex
intellectual process than writing

sequential programs due to the necessity
to embrace all of the aspects of the

sequential programming techniques and
in addition to solve new problems and

meet new challenges posed by the
parallelism involved at many different

levels and in many different views.

©BOROVSKA

40

PARALLEL PROGRAMMING
ENVIRONMENTS

API – FLAT PARALLEL PROGRAMMING
MPI – MESSAGE PASSING INTERFACE

MPI Forum www.mpi-forum.org
MPICH2

The MPI standard & download www.mcs.anl.gov/mpi/
API – MULTITHREADED PROGRAMMING

OpenMP
The OpenMP standard & download www.openmp.org

HYBRID (MULTILEVEL) PARALLEL PROGRAMMING
MPI+OpenMP

In combination with Fortran, C, C++, Visual C

©BOROVSKA

21

41

Parallel programming with MPI

Functions MPI_ : MPI_Init (&argc, &argv)
Default communicator : MPI_COMM_WORLD

Types of communications:
point-to-point communication MPI_Send(),

MPI_Recv(), MPI_Isend(), MPI_Irecv (I –
initiate)

collective communication MPI_Bcast(),
MPI_Scatter(), MPI_Gather() and

MPI_Reduce()

©BOROVSKA

42

The message passing
programming model

The standard MPI (Message
Passing Interface) is the most

popular specification for message
passing, supporting parallel

programming
Virtually, every commercial parallel

computer supports MPI
Libraries are available freely for use

on every cluster
©BOROVSKA

22

43

Multiple processors, each with local
memory
SAN supports message passing
between any pair of processors
Each task of the task graph
becomes a process
Each process may communicate
with any other process

©BOROVSKA

The message-passing model

44

©BOROVSKA

23

45

©BOROVSKA

SY
ST

EM
 A

R
EA

 N
ET

W
O

R
K

46

©BOROVSKA

24

47

The number of parallel processes is fixed before
starting the program
In general, this number remains constant in
executing the program
Each process computes its local variables and
communicates with the other processes or I/O
devices, alternatively
Processes use communications for information
exchange and synchronization, as well

©BOROVSKA

The message-passing model

48

If the message contains data → for information
exchange

If the message does not contain data– for
synchronization

Advantages of the message passing model
Efficient for wide spectrum of MIMD

architectures
Natural medium for multicomputer platforms,

which do not support global address space
©BOROVSKA

The message-passing model

25

49

Debugging programs with message
passing is easier than programs with

global variables
It is easier to run deterministic programs

Nondeterministic behavior makes
debugging difficult – in various executions
of the parallel program different processes

acquire one and the same resources in
different order

©BOROVSKA

The message-passing model

50

The first version of the message passing library
PVM (Parallel Virtual Machine) is developed in
Oak Ridge National Laboratory
PVM – parallel program execution on
heterogeneous collections of parallel and
sequential machines
1993 г. – version 3 is published

Geist, Al, Adam Bequelin, Jack Dongarra, et all.,
“PVM: Parallel Virtual Machine: A User’s Guide
and Tutorial for Networked Parallel Computing,

Cambridge, MA: The MIT Press, 1994.

©BOROVSKA

The message-passing model

26

51

MPI_Init – initializes MPI
MPI_Comm_rank – determines the ID of a
process
MPI_Comm_size – determines the number of
processes
MPI_Reduce – reduction operation
MPI_Finalize – shutdown MPI
MPI_Barrier – barrier synchronization
MPI_Wtime – getting the time
MPI_Wtick – precision of the timer

©BOROVSKA

MPI Functions:

52

After the initialization, every active process
becomes a member of the communicator

MPI_COMM_WORLD (default communicator)
The communicator is an opaque object,

providing media for interprocess message
passing

Defined communicators – processes are
divided into independent communicating

groups

©BOROVSKA

Functions MPI_Comm_rank
and MPI_Comm_size

27

53

©BOROVSKA

54

Within the communicator processes have a strict
order
The position of the process in the communicator
is determined by its rank
In a communicator of p processes, each process
has a unique rank (ID), varying from 0 to p-1
A process may use its rank in order to find out
for which part of the computation and data it is
responsible for

©BOROVSKA

Parallel programming with MPI

28

55

A process may call function MPI_Comm_rank in
order to get its rank within the communicator
Function MPI_Comm_size may define the total
number of processes within the communicator

Function MPI_Finalize
After finishing all MPI calls, the process calls

MPI_Finalize to release all system resources (for
ex., the memory allocated for it)

©BOROVSKA

Parallel programming with MPI

56

Compiling MPI programs
The command depends on the specific system

% mpicc –o myprog myprog.c
This command makes the system compile the MPI

program in file myprog.c and saves the
executable code in file myprog

Running MPI programs
% mpirun -np 2 myprog

The flag –np shows the number of processes to be
created

©BOROVSKA

Parallel programming with MPI

29

57

Collective communication involves a
group of processes, that distribute or

gather a value or multiple values
Function MPI_Reduce

This function performs one or more
reduction operations on values, sent by

all the processes within the
communicator

©BOROVSKA

COLLECTIVE COMMUNICATION

58

©BOROVSKA

Function MPI_Reduce

30

59

int MPI_Reduce (
void *operand, /* address of the 1st element*/
void *result, /* address of the 1st result */
int count /* number of reductions */
MPI_Datatype type, /* type of elements */
MPI_Op operator, /* reduction */
int root, /* process(rank) ← result */
MPI_Comm comm) /* communicator ID */

In spite of the fact, that only one process gets the
global result, all processes within the

communicator must call function MPI_Reduce,
in order to take part in the collective

communication!!!
©BOROVSKA

!

Parallel programming with MPI

60

BENEFITS OF PARALLEL EXECUTION

Functions MPI_Wtime and MPI_Wtick
In order to measure the performance – wall
clock time (seconds) – from the start until

the end of program execution
Generally, we ignore the time for initializing

MPI processes, the communication
configuration of processes and the I/O
operations of the sequential devices

©BOROVSKA

BENCHMARKING
PARALLEL PERFORMANCE

31

61

Function MPI_Wtime
returns the number of

seconds, counted from a
fixed time

Function MPI_Wtick
returns the precision of

the result, got from
MPI_Wtime.

©BOROVSKA

double MPI_Wtime (void)
double MPI_Wtick (void)

We can estimate the execution time of a code section,
calling twice function MPI_Wtime before and after the

section. The difference of the two values, returned by the
function, estimates the elapsed time in seconds.

Parallel programming with MPI

62

Neither of the processes can proceed
after the barrier until all of the

processes have reached it
If the barrier is before the first call of

the function MPI_Wtime, all processes
will be included in the frames of the

measured section approximately in one
and the same time

©BOROVSKA

Function MPI_Barrier

32

63

Prototype of the function for barrier
synchronization :

Int MPI_Barrier (MPI_Comm comm)
Argument shows the processes of the
communicator, taking part in barrier

synchronization
We add local variable in function main:

double elapsed_time;
Timer is started after initializing MPI:

©BOROVSKA

Parallel programming with MPI

64

MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
Elapsed_time = - MPIWtime ();
After calling MPI_Reduce we can stop the timer:
MPI_Reduce (…..);
Elapsed_time + = MPI_Wtime();

As a result we can estimate the time for the
execution of the parallel program

©BOROVSKA

Parallel programming with MPI

33

65

Parallel programming
with OpenMP (Shared Memory Model)

INCREMENTAL PARALLELISM
#pragma omp <directive> [clause[[,] clause]...]

pragma omp <body>
#pragma omp parallel for

#pragma omp parallel sections
Clauses: firstprivate lastprivate

Synchronisation: pragma critical, reduction clause
Thread scheduling: static, dynamic, guided, run

time

©BOROVSKA

66

Parallel programming

There is only one fundamental model in the
sequential programming used for decades without
any significant change and that is the von
Neumann model while parallel programming is
imposed to rapid changes and immense variety of
parallel programming models and paradigms.
Moreover the programming tools, utilities and
environments, such as compilers, utilities for
software tuning and debugging, profiling tools and
software frameworks, are much more advanced for
the sequential software development compared to
the parallel programming.

©BOROVSKA

34

67

PARALLEL PARADIGMS

SPMD – Single Program Multiple Data
Manager/Workers (Task Farming)

Divide and Conquer
Working Pool

Pipeline
Phase Parallel

Asynchronous/Synchronous Iterations
©BOROVSKA

68

Abstract parallel computers
PRAM – Parallel Random Access Machine

Fortune S., Wyllie J., Parallelism in Random Access
Machine, Proceedings of ACM Symposium On
Theory of Computing, pp. 114-118, 1978
BSP – Bulk Synchronous Parallel

Valiant L., A Bridging Model for Parallel Computation,
Communication of ACM, Vol. 33, pp. 103 – 111,
August 1990
Phase Parallel Model

Xu Z., Hwang K., MPP versus Clusters for Scalable
Computing, Proceedings of the 2nd International
Symposium on Parallel Architectures, Algorithms,
and Networks, IEEE Computer Society Press, June,
1996, pp.117-123

©BOROVSKA

35

69

PARALLEL SOFTWARE DESIGN

The parallel software developers are facing
various problems that are not common for the

sequential programming such as the
non-determinism of the programs, the need for

communication and synchronization, the
definition of tasks and sub-tasks, the data

distribution, workload balance, deadlock and
livelock, hazards.

©BOROVSKA

70

PARALLEL PROGRAMMING

The design and development of parallel
software requires parallel software
developers and system architects to work
close together.
Parallelism introduces additional parameters
to be monitored and controlled in order to
improve and optimize the parallel programs
execution.

©BOROVSKA

36

71

PARALLEL PROGRAMMING
High performance quality and efficient
implementations of parallel algorithms can be
developed only if specific parallelism profiling and
software tuning tools are utilized in order to monitor
communication transactions execution, resources
allocation, memory contents and data structures,
inter-processors communications, static and dynamic
processes and threads allocation.
Usually the parallel algorithm implementations are
highly dependant on the system architecture to be
executed on and thus the migration form one parallel
computer platform to another is not straightforward.

©BOROVSKA

72

PARALLEL PROGRAMMING

Decomposition of the algorithm or the data;
Agglomeration of the tasks within processes and/or
threads;
Mapping the processes, threads and/or tasks for
execution on the parallel hardware resources;
Coordination of the parallel activities (information
exchange, synchronization and mutual exclusion)
Balance of the parallel computational workload;
Monitoring the performance and analysis of the
factors influencing the parallel system efficiency;

©BOROVSKA

37

73

©BOROVSKA

User interface

Visualization tools

Parallel algorithm

Implementation plan

Coding

Executable code

Experiments

Working version of parallel
program

Specification of the parallel
software

Tuning

Effective parallel
implementation

Tools for process creation and
management in the parallel system

Compilers
Libraries

Tuning utilities

Software design tools
Functional validation tools

Performance estimation tools

Tools for profiling and performance
estimation of the parallel

implementation

Fig. 1. The process of parallel software design and the tools utilized at each stage

74

Parallel software design follows the same
stages as the sequential software design:
(1) specification of the requirements to the
software, (2) design and coding, (3) tuning
and testing.
The difference between sequential and
parallel software design at that stage is the
necessity of thorough planning and design of
communication and synchronization in the
parallel program.
The parallel program specification has to
respect and contain all the required
coordination of the concurrent computations.
The parallel computation specifics require
also careful analyses and estimation of
parallel solution performance in respect to the
features of the parallel architecture.
The parallel program granularity and the
communication structure have to be selected
appropriately.

©BOROVSKA

38

75

PARALLEL PERFORMANCE

The combination of the parallel
application and the parallel computer
platform is called parallel system

par

seq
up T

TS =

©BOROVSKA

n
SE up

n =

coordparcomppar TTTT ++=

76

The impact of the processors’ number
over parallel system’s performance

©BOROVSKA

39

77

ISOPERFORMANCE MODELS

ISOEFFICIENCY – characterizes system
scalability E=f(W, n) ; if we fix the efficiency to
some constant (e.g., 50%) and solve the efficiency
equation for W, the resulting function is called the
isoefficiency function of the system [Grama]

The isoefficiency metric provides a useful tool to
predict the required workload growth rate with

respect to the machine size increase [Kumar]

©
B

O
R

O
VS

K
A

78

ISOSPEED – a constant speed is preserved while
scaling up both machine size and problem size at the
same time [Sun & Rover]
Characterizes system scalability
ISOUTILIZATION – predicts the workload growth
rate with respect to the increase of machine size,
while maintaining the same utilization & it is consistent
with execution time i.e., a more scalable system
always has a shorter execution time.

Systems with a smaller isoutilization are
more scalable than those with a large one.
©BOROVSKA

ISOPERFORMANCE MODELS

40

79

Parallel Performance Laws

Amdahl‘s law
(fixed problem size)
W – computational workload

α – sequential part
1- α parallelizable part

©BOROVSKA

ααα)1(1)/)(1(−+−+ == n
n

nWW
WS

n

α
1

→nS)(∞→n ()∞→
++−+

+−+

→=

==

n

W
T

W
nTn

n

TnWW
WS

n

00

0

1

)1(1

)/)(1(

αα

αα

80

Parallel Performance Laws

Gustafson’s law (1988)
(fixed time) - scalability

©BOROVSKA

W’= αW+(1- α)nW

nW
nWW

T
TS

par
sn)1()1(

'
'' αααα −+=−+==

WТ
n

TW
nWW

T
TS

par
sn

/1
)1()1(

'
''

00 +
−+

=+
−+==

αααα

41

81

Parallel Performance Laws

Sun&Ni‘s Law (1993)
Memory Bound

©BOROVSKA

nnG
nG

nWnGW
WnGW

T
TS

par
sn /)()1(

)()1(
/)()1(

)()1(
*

** αα
αα

αα
αα

−+
−+=−+

−+==

WTonnG
nG

ТonWnGW
WnGWSn //)()1(

)()1(
/)()1(
)()1(* +−+

−+=+−+
−+= αα

αα
αα

αα

G(n)=1 fixed problem size
G(n)=n fixed time

G(n)>n memory bound

82

©BOROVSKA

Average granularity

Average system overhead

Average level of parallelism

System overhead

Resource utilization

Efficiency

Speedup

Parallel speed

Critical path

Time for parallel processing
(n processors)

Time for sequential processing
Definition TaxonomyParameter

T s

T n

T ∞

Pn

Sn

En

U n

T 0

Lav

T av,0

Gav

∑
=

=
k

i
ss iTT

1
)(

() TL
TT

k

i i

i
n

i
0

1 min
)(
+=∑

=

∑
=

∞
=

k

i i

s

L
TT

i

1

)(

TP
n

n

W
=

T
TS

n

s
n=

Tn
TE

n

s
n=

Pn
PU
peak

n
n
=

TTT eractparav int,0 +=

T
TL s

av
∞

=

W
TT av

0
,0 =

TG W
av

0

=

42

83

Parallel Performance Anomalies

Normal case: 1<Sup<n
Superlinear speedup Sup>n, E>1
Decceleration Sup<1

84

Metaheuristics

The challenges

©BOROVSKA

43

85

The problem area

Solving NP (nondeterministic
polynomial) problems – alternatives:
exhaustive search and heuristics
Numerous practical and theoretical
tasks including applications in the areas
of signal and image processing, task
allocation, course scheduling, network
design, graph coloring and partitioning,
molecular analysis

©BOROVSKA

86

Taxonomy

Metaheuristics comprise high level
algorithms, that coordinate the activities of
heuritics algorithms, for ex. algorithms for
local search, to find better quality solutions of
optimization problems
Metaheuristics include algorithms that

manage the trade-off between search
diversification, when search is traversing
bad areas of the search space, and
intensification, when search is focused in
promising areas of the search space.

©BOROVSKA

44

87

Trade-offs

The advantages of metaheuristics include eliminating
or reducing premature stops in local optima solutions
that are far from the optimal solution.
The major disadvantage is the enormous amount of
computational time required.
Parallel metaheuristics gives the opportunity to
reduce computational time and improve the
quality of solution by means of parallel search in
multiple areas of the search space and utilizing
various strategies for search in the search areas.

©BOROVSKA

88

Scope

Genetic algorithms
Metagenetic algorithms
Memetic algorithms
Simmulated annealing
Tabu search
Ant colony optimization
GRASP – Greedy Randomized Adaptive
Search Procedure
VNS – Variable Neighbor Search

©BOROVSKA

45

89

Genetic algorithms

Genetic algorithms (GA’s) provide search
technique in computer science to find
approximate solutions to optimization and
search problems and present a particular
class of evolutionary algorithms
GA’s are typically implemented as
computational models simulating biological
evolution.
They perform searching a solution space for
an optimal or near-to-optimal solution to a
problem.

©BOROVSKA

90

Genetic algorithms

The possible solutions are searched by evolving
populations of individuals (candidate solutions),
represented by chromosomes, over multiple
generations to find better solutions to the target
problem.
The evolution starts from initial population of random
individuals and goes on implying the principle of
“survival of the fittest”.
The genetic operations comprise activities for
producing offspring such as selection, recombination
and mutation.
The fitness of the individual represents the quality of
solution achieved.

©BOROVSKA

46

91

Genetic operations

1. Initial population
2. Selection
3. Recombination (Crossover)
4. Mutation
5. Create Offspring
6. Evaluate fitness of individuals
7. To step 2 until convergence conditions

are satisfied

©BOROVSKA

92

Metagenetic algorithms

Genetic algorithms of high level the
purpose of which is to optimize the
parameters of low level genetic algorithms
Parameters of genetic algorithms
(parameter vector): possibility of
crossover, mutation rate, selection
strategy, crossover strategy, etc.
Search techniques utilizing self-adaptation

©BOROVSKA

47

93

Simulated annealing

Simulated annealing (SA) is a Monte
Carlo based method for numerical
optimization that implies the principles
of thermodynamics and is motivated by
an analogy to annealing in solids.
It performs optimization without prior
knowledge of the problem structure or
of any particular solution strategy.

©BOROVSKA

94

Annealing

©BOROVSKA

48

95

Simulated annealing
The analogy between a physical many-particle system

and a combinatorial optimization problem is based on
the following equivalences:

solutions in a combinatorial optimization problem are
equivalent to states of a physical system;
the cost of a solution is equivalent to the energy of a
state;
a control parameter plays the role of temperature,
such that:

at high temperatures changes in energy are accepted;
at low temperatures only decreases or smaller
increases in energy are accepted;
if temperature approaches zero no increases are
accepted at all.

©BOROVSKA

96

Simulated annealing

The number of moves at each temperature is referred
to as "chain length" and can be regarded as Markov
chain.
Cooling schedule of the simulated annealing is
determined by the chain length and the rate at which
the temperature decreases from chain to chain:

©BOROVSKA

where, T0 is the initial temperature, TN is the final
temperature, and Tn is the temperature value at iteration n.

Given an appropriate cooling schedule and an infinite
amount of time the algorithm will converge to the real

optimum.

),,,(0 nNTTfT nN =

49

97

Memetic algorithms

Memetic algorithms are
forms of genetic

algorithms, that are
combined with local

search techniques, like
simulated annealing

©BOROVSKA

98

Tabu search

Tabu search implies generating and
evaluating mutations of individual solutions in

the search space
The individual of the least fitness is selected
Tabu list is constructed and maintained in

respect to the complete and partial solutions
in order to eliminate cyclic searches and to

provide searching on a large scale
Solutions containing elements of the tabu list,
are prohibited, and are being updated when

moving within the search space.
©BOROVSKA

50

99

Ant colony optimization (ACO)

Multi-agents (ants) search for finding
out small productive areas in the search
space
Applied for problems, where no global
perspective can be analyzed and,
hence, no other methods can be applied
The quality of solution is associated with
the aggregate quantity of pheromones
produced by the ants

©BOROVSKA

100

Greedy Randomized Adaptive Search
Procedure (GRASP)

Inherently, GRASP is a multistart procedure,
applied successfully for finding good quality
solution in solving discrete combinatorial
optimization problems.
Metaheuristics, based on the concepts of
GRASP and VNS (Various Neighbor Search)
requires two algorithms, the first algorithm is
responsible for generating the initial solution,
and the second algorithm performs the local
search.

©BOROVSKA

51

101

Parallel Metaheuristics - Focus

Parallel Evolutionary
Computing
Parallel Simulated
Annealing

©BOROVSKA

102

Parallel Evolutionary Computing

The major effect of implementing parallel
genetic algorithms (PGA’s) is obtaining
speedup in solving optimization problems.
PGA’s provide the opportunity to apply
different strategies and techniques to improve
the convergence of the algorithm and to
facilitate the quality of solution.

©BOROVSKA

52

103

Strategies for Designing Parallel Genetic
Algorithms for Multicomputer Platforms

©BOROVSKA

104

©BOROVSKA

In
su

ffi
ci

en
t P

er
fo

rm
an

ce

53

105

TRAVELLING SALESMAN
PROBLEM

The TSP is a widely explored NP-hard
combinatorial optimization problem the
purpose of which is to find out the shortest
tour for the salesman for a given set of cities
to be visited.
That tour is supposed to start from one city, to
traverse all the cities visiting each city just
once and ending at the starting city i.e. the
path is cyclic. The length of that tour should
be minimal.

©BOROVSKA

106

THE GENETIC APPROACH

The chromosomes of the individuals
represent a tour of the cities, and fitness
represents the length of the path.
The fitness of each chromosome is
calculated.
The best individual is always selected and is
not subjected to genetic operations i.e. elitism
is maintained.
A pair of chromosomes to be recombined is
selected randomly.

©BOROVSKA

54

107

THE GENETIC APPROACH
One-point cross-over is applied – the resulting
chromosome of the offspring is formed by copying the part
of the chromosome of the first parent up to the point of
cross-over and the second part is a copy of the
chromosome of the second parent from the point of cross-
over to the end of the chromosome.
After the recombination of all pairs of chromosomes they
are subjected to mutation with a specified rate – two
randomly chosen genes of randomly selected
chromosomes are selected and they change places i.e. two
random cities change places in the routes constructed so
far.
The fitness of the newly generated offspring is calculated
and the genetic operations are repeated until the
convergence check is satisfactory.

©BOROVSKA

108

THE GENETIC APPROACH
The genetic mutation is a random change that occurs in the
characteristics of a gene.
Mutation tends to bring about major unpredictable changes
in the fitness of an individual.
Increasing the number of mutations results in increasing
the algorithm’s freedom to search outside the current
region of variable space.
Mutation rate (µ) is a limitation ratio for the number of
mutation events on each generation. Different mutation
strategies have been applied to facilitate the convergence
of PGA.
The variation level of mutation is beneficial in parallel
environments.

©BOROVSKA

55

109

Parallel Software
Parallel programming
environment MPICH
Version 1.2.4.
Programming language
compiler Microsoft Visual
C++ 2005.
Parallel profiling -
Jumpshot Version 3.0.
Parallel genetic
algorithms are
implemented in C++ using
MPI and OpenMP.

©BOROVSKA

Target Computer Platform

110

Solving the TSP in Parallel

©BOROVSKA

The parallel model of genetic computation
based on the manager/workers parallel paradigm

56

111

Parallelism Profiling and
Benchmarking

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

Sp
ee

du
p

1 2 3 4 5

Number of Processors

Speedup of Parallel Solving the TSP Based on
Genetic Algorithm

©BOROVSKA

Scalability of machine size

Gantt’s chart
for the parallel genetic computation

of TSP

for 1000 towns

Communication Transactions Histogram

112

Parallel computational model for solving the TSP by genetic
approach with SPMD parallel paradigm

and chromosome migration

57

113

Parallel Implementations Based on Island
Models with Chromosomes Migration

©BOROVSKA

Parent 1

Parent 2

Offspring

Number of Chromosomes/2 +
Process ID

114

List of Experiments

©BOROVSKA

200.05/0.02/0.01614002806009

200.05/0.02/0.01512002406008

200.05/0.02/0.01410002006007

200.05/0.02/0.01614002804006

200.05/0.02/0.01512002404005

200.05/0.02/0.01410002004004

200.05/0.02/0.01614002802003

200.05/0.02/0.01512002402002

200.05/0.02/0.01410002002001

Exchange periodMutation rateMigration sizePopulation sizeNumber of
populations

Number of
generations

Experiment #

58

115

Parallelism Profiling and
Benchmarking

©BOROVSKA

G
20

0/
P

20
0

G
20

0/
P

24
0

G
20

0/
P

28
0

G
40

0/
P

20
0

G
40

0/
P

24
0

G
40

0/
P

28
0

G
60

0/
P

20
0

G
60

0/
P

24
0

G
60

0/
P

28
0

2
3

4
50

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

SPEEDUP

GENERATIONS/POPULATIONS

NUMBER OF
COMPUTERS

116

Island Models with
Parallel Mutation Strategies

©BOROVSKA

Parallel genetic computation with periodic circular migration

59

117

Experimental
variable genetic parameters

28
144180240360720600

24
120150200300600500

19
96120160240480400

14
7290120180360300

9
486080120240200

4
24304060120100

Subpopulation size
Population

size#Cities #Migrants

54321
#Processors

118

Experimental
Parallel Mutation Strategies

©BOROVSKA

0.01≤µ≤0.2

Parallel variable mutation rate for each generation
on; for even processes →

incrementing µ+ =0.001; 0.01≤µ≤0.2
and for odd processes → decrementing
µ −=0.001; 0.01≤µ≤0.2

pvmrg±0.001

0.01≤µ≤0.2

Parallel variable mutation rate for each process has
different fixed mutation rate as: µ =0.2 → P0,
µ =0.15 → P1,

µ =0.1 → P2, µ =0.05 → P3 and
µ =0.01 → P4

pvmr0.05

Parallel
variable

mutation rate
different

for each
process

pvmr

µ −=0.001;
0.01≤µ≤0.2

Variable mutation rate for each generation
decreasing µ −=0.001; 0.01≤µ≤0.2

vmrgdec0.001

µ+ =0.001;
0.01≤µ≤0.2

Variable mutation rate for each generation increasing
µ+ =0.001; 0.01≤µ≤0.2

vmrginc0.001
Variable

mutation rate for
each

generation

vmrg

µ =0.2Fixed mutation rate µ =0.2Fmr0.2

µ =0.15Fixed mutation rate µ =0.15Frm0.15

µ =0.1Fixed mutation rate µ =0.1Fmr0.1

µ =0.05Fixed mutation rate µ =0.05Fmr0.05

µ =0.01Fixed mutation rate µ =0.01Fmr0.01

Fixed mutation
ratefmr

µDescriptionAbbreviationDescriptionMutation

60

119

Parallelism Profiling and
Benchmarking

©BOROVSKA

100 200 300 400 500 600

1

3

5

0

0,5

1

1,5

2

2,5

3

3,5

4

Sp
ee

dU
P

Towns

Number of
Computers

120

Migration Policies
for Island Genetic Algorithms

©BOROVSKA

one way local (“slow”) best chromosomes migration –
unidirectional propagation of migrants (best individuals) to the nearest
neighbor island, circular topology
two way local (“fast”) best chromosomes migration - bidirectional
propagation of migrants (best individuals) to the nearest neighbor
islands, circular topology
global (“instant”) best chromosomes migration – broadcast
propagation of migrants (best individuals) to all islands, star topology
one way local (“slow”) random chromosomes migration –
unidirectional propagation of migrants (random individuals) to the
nearest neighbor island, circular topology
two way local (“fast”) random chromosomes migration -
bidirectional propagation of migrants (random individuals) to the
nearest neighbor islands, circular topology
global (“instant”) random chromosomes migration – broadcast
propagation of best migrants (random individuals) to all islands, star
topology

61

121

Migration Topologies
for Island Genetic Algorithms

©BOROVSKA

122

Migration Topologies
for Island Genetic Algorithms

©BOROVSKA

62

123

Parallelism Profiling

©BOROVSKA

124

Speedup

©BOROVSKA

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8 9 10

Number of processors

Sp
ee

du
p

1 Way Circle Best 1 Way Circle Random 2 Way Circle Best 2 Way Circle Random

Global Best Global Random Independent

63

125

CONCLUSIONS

The experimental results show that
the parallel coarse-granule
implementation scales almost
proportionally in respect to the
machine size.
The speedup slightly slows down
increasing the problem size from
100 to 600 cities.

126

Quality of Solution Analysis

The percentage quality difference D of
one run of PGA on the multicomputer

platform compared to the best solution of TSP
is calculated as:

- length of the shortest tour found by the parallel
genetic algorithm;

-length of the shortest tour.

©BOROVSKA

%100
_

__
×

−
=

fitnessperfect
fitnessperfectfitnessbestD

fitnessbest _

fitnessperfect _

64

127

Fitness Statistics

Fitness Statistics vmrg+0.001

0

5

10

15

20

25

30

35

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Run#

Fi
tn

es
s

©BOROVSKA

Fitness Statistics vmgr-0.001

0

5

10

15

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Run#

Fi
tn

es
s

Best fitness for variable mutation rate for each generation

128

QUALITY OF SOLUTION
ANALYSIS (pvmr0.05)

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Run#

Fi
tn

es
s

0%

20%

40%

60%

80%

100%

120%

1 5 9 13 17 21 25 29 33 37 41 45 49

Run#

D
 (%

)

-60%

-40%

-20%

0%

20%

40%

60%

80%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Runs

dD
 (%

)

65

129

Percent Quality Difference for the
Parallel Mutation Strategies

©BOROVSKA

Fitness Average

20,5

21

21,5

22

22,5

23

23,5

24

24,5

25

25,5

fmr0.01 fmr0.05 fmr0.1 fmr0.15 fmr0.2 vmrginc0.001 vmrgdec0.001 pvmr005 pvmrg±0.001

Mutation type

D
av

(-)

130

Quality Difference
Quality Difference vmrg+0.001

-0,2
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Run#

D
 (-

)

Quality Difference pvmrg±0.001

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Run#

D
 (-

)

©BOROVSKA

42%
44%
46%
48%
50%
52%
54%
56%
58%

fm
r0.

01

fm
r0.

05
fm

r0.
1

fm
r0.

15
fm

r0.
2

vm
rg

inc0
.00

1

vm
rg

dec
0.0

01

pvm
r0.

05

pvm
rg

±0
.00

1

Mutation type

D
av

(%
)

66

131

CONCLUSIONS

The variation of mutation rate for each
generation and for each process can improve
the performance and get the best fitness of
PGA.
The best fitness achieved experimentally is
for the case of parallel fixed mutation rates for
each local evolution.
This result is explained by the fact that in this
case we get a great diversity of populations
and a greater chance to evolve near optimal
population.

132

Migration Policies

0%

10%

20%

30%

40%

50%

60%

In
de

pe
nd

en
t

1W
ay

C
irc

le
B

es
t

1W
ay

 C
irc

le
R

an
do

m

2W
ay

 C
irc

le
B

es
t

2W
ay

 C
irc

le
R

an
do

m

G
lo

ba
l B

es
t

G
lo

ba
l

R
an

do
m

D
A

v
(%

)

©BOROVSKA

-55%

-45%

-35%

-25%

-15%

-5%

In
de

pe
nd

en
t

1W
ay

C
irc

le
Be

st

1W
ay

 C
irc

le
R

an
do

m

2W
ay

 C
irc

le
Be

st

2W
ay

 C
irc

le
R

an
do

m

G
lo

ba
l B

es
t

G
lo

ba
l

R
an

do
m

dD
M

in

Comparison of quality difference Comparison of minimum deviation

67

133

Migration Policies

Two way circular migration Best chromosomes

40

50

60

70

80

90

1 6 11 16 21 26 31 36 41 46
Run#

Fi
tn

es
s

©BOROVSKA

Two way circular migration Best chromosomes

0%

10%

20%

30%

40%

50%

60%

70%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Run#

D
 (%

)
Fitness statistics for

two-way circular
best chromosomes migration

Quality difference
for two- way circular

best chromosomes migration

134

Migration Policies

©BOROVSKA

Two way circular migration Best chromosomes

-25%

-15%

-5%

5%

15%

25%

35%

45%

1 5 9 13 17 21 25 29 33 37 41 45 49

Run#

dD
 (%

)

Quality difference deviation
for two-way circular migration policy
with best chromosomes migration

68

135

The Room Assignment Problem

The room assignment problem attempts to
arrange N persons in N/2 rooms minimizing
the cost function defined as a sum of conflicts
between the room mates.
The input data is a conflict table C of size
N×N, where C[i,j] is a coefficient, denoting
personal dislikes in case person i and person
j share one and the same room.
The table is symmetric with respect to the
main diagonal.

©BOROVSKA

136

Simulated Annealing
The algorithm is iterative.
Iteration involves generating a candidate solution to the
problem under investigation and estimation of its cost.
The solution is then perturbed.
If the perturbation results in a decrease (or no change) in
the cost then it is accepted.
If the new cost is greater, then the perturbation is accepted
with a probability ,

where ∆ is the difference between the old and new value of
the cost function and Т is referred to as a temperature.
The number of moves at each temperature is referred to as
"chain length" and can be regarded as Markov chain.

©BOROVSKA

te ∆−

69

137

The Room Assignment Problem
The solution to the problem is represented as an
assignment of each person to a given room;
Persons are placed in different rooms randomly;
The cost function is the simple sum of the dislike
coefficients of all persons in the same room.
SA operates by swapping two randomly selected
persons, i.e. exchanging their rooms. The change in
cost resulting from the swap is evaluated. According
to the SA algorithm a decrease in cost is accepted
and an increase is accepted only if it satisfies a
predefined probability equation.
In order to compute the change in cost it is not
necessary to reevaluate the cost of the entire current
assignment, but only the change caused by the
persons that change their rooms.

©BOROVSKA

138

Parallel
computational

model of
simulated

annealing for
the room

assignment
problem

©BOROVSKA

M
PI

_B
ca

st

in
iti

al
 a

rr
an

ge
m

en
t

M
PI

_R
ed

uc
e

lo
ca

l c
os

t f
un

ct
io

n

MPI_Bcast
initial arrangement

MPI_Bcast
dislikes matrix

Worker

MPI_Bcast
number of persons

M
PI

_B
ca

st

nu
m

be
r o

f p
er

so
ns

MPI_Bcast
number of persons

MPI_Bcast
initial arrangement

MPI_Bcast
dislikes matrix

M
PI

_B
ca

st

di
sl

ik
es

 m
at

rix

M
PI

_B
ca

st

nu
m

be
r o

f p
er

so
ns

M
PI

_B
ca

st

in
iti

al
 a

rr
an

ge
m

en
t

M
PI

_B
ca

st

di
sl

ik
es

 m
at

rix

M
PI

_R
ed

uc
e

lo
ca

l c
os

t f
un

ct
io

n

MPI_Reduce
local cost function

Manager/
Worker

Worker

Worker Worker

MPI_Reduce
local cost function

70

139

Parallel Performance

©BOROVSKA

1 2 3 4 5 6 7 8 9 10

60

100

200
0

1

2

3

4

5

6

7

8

9

10
Sp

ee
du

p

Process#

Speedup of parallel simmulated annealing for room assignment problem

140

Cost Function Dynamics

©BOROVSKA

Cost function dynamics for each of 10 parallel process

0

20

40

60

80

100

120

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Move#

C
os

t f
un

ct
io

n

71

141

Cost Function Dynamics
Dynamics of cost function for T0=1

0

20

40

60

80

100

120

10 100 190 280 370 460 550 640 730 820 910 1000 1090 1180 1270

Move#

C
os

t f
un

ct
io

n

©BOROVSKA

Dynamics of cost function for T0=10

0

20

40

60

80

100

120

140

1 100 199 298 397 496 595 694 793 892 991 1090 1189

Move#

Co
st

 fu
nc

tio
n

142

Quality of Solution

©BOROVSKA

0

5

10

15

20

25

30

B
es

t c
os

t f
un

ct
io

n

1 2 3 4 5 6 7 8 9 10

Process#

Quality of solution of parallel simualted annealing

72

143

Parallel random generators

Perfect RNG does not exist (no correlations
of the numbers within the sequence)
Linear congruential RNG, lagged Fibonacci
RNG (C language)
Methods for parallel RNG - manager/workers,
“leapfrog”, sequence splitting, parametrization

©BOROVSKA

leapfrog

sequence splitting

144

The Influence of the Parallel Random Generator
and the Stopping Criteria

©BOROVSKA

0
5

10
15
20
25
30
35

B
es

t c
os

t
fu

nc
tio

n

1 2 3 4 5 6 7 8 9 10

1500 moves Lepfrog
2500 moves Lepfrog

1500 moves LinCongr
2500 moves LinCongr

Process#

Quality of solution of parallel simulated annealing

73

145

The Influence of the Parallel Random Generator
and the Stopping Criteria

©BOROVSKA

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

Number of processes

Quality of Solution of Parallel Simulated Annealing

t<0.0001 Lepfrog

t<0.00001 Lepfrog

1000 iter nochange
Lepfrog
5000 steps Lepfrog

2500 steps Lepfrog

1500 steps Lepfrog

1500 steps DifSeed

2500 steps DifSeed

146

Parallel performance
The speedup gained by parallel independent runs - the
results show almost linear speedup when increasing the
number of parallel processes.
The speedup is larger for greater number of persons i.i.
greater computational workload in finding the final solution.
Obviously, utilization of more parallel processes provide
better quality solution for fixed number of iterations of the
algorithm due to higher diversification of the state space
searches provided by the parallel computations in case
parallel random generator guarantees uncorrelated or
slightly correlated sequences on the different processors.
The solution quality is better for greater parallel machine
size and larger parallel computational workload (the number
of iterations), i.e. the parallel algorithm scales well with
respect to the size of the parallel machine and the size of
parallel application.

74

147

Thank You for the Attention!

©BOROVSKA

