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THE CHALLENGE

As the amount of data in our world grows 
tremendously and doubles every 24 months 
— the data equivalent of Moore’s Law, there 
is a new challenge facing IT community: vast 
quantities of data will require new computing 
architectures in order to be processed. 
To ensure that today’s computers are able to 
handle future applications, they will need to 
increase their processing capabilities at a rate 
faster than the growth of data.

©BOROVSKA
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REQUIREMENTS&EXPECTATIONS

GREATER 
PERFORMANCE
LARGER MEMORY 
CAPACITY
INTELLIGENCE

©BOROVSKA

4

INNOVATIVE TECHNOLOGIES

MULTI-CORE PROCESSORS 
(MULTITHREADING)
SCALABLE PARALLEL 
COMPUTER ARCHITECTURES

IEEE Technical Committee on Scalable 
Computing www.ieeetfcc.org

CLUSTER COMPUTING
IEEE Task Force on Cluster Computing 

www.clustercomp.org©BOROVSKA
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FUNDAMENTAL ASPECTS OF 
PARALLEL COMPUTING

PARALLEL ALGORITHMS
AND APPLICATIONS

PARALLEL 
PROGRAMMING

PARALLEL 
ARCHITECTURES
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Computer clusters
www.topclusters.org

Clusters of various architectural styles have become 
popular nowadays based on hyperthreading and 
multi-core processors. 
Consequently, shared memory parallel programming 
models are emerging as a serious competitive 
environment to message passing. 
Hybrid (multi-level) parallel programming model is 
based on a combination of the two approaches -
high-level parallelism afforded by message-passing 
and low-level parallelism used for loop level 
multithreaded parallelism. 

©BOROVSKA
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Computer Cluster Google
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Blue Gene
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Packaging:
Compact cluster - nodes are packaged in 1 or more 
racks in a room, nodes are not attached to 
peripherals, called headless workstations, utilizes a 
high-bandwidth, low-latency communication network
Slack cluster – nodes are attached to their 
peripherals i.e. they are complete SMP, 
workstations, and PCs, they may be located in 
different rooms, buildings, geographically remote 
regions©
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to 4 orthogonal attributes
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Control
Centralized – all the nodes are owned, controlled , managed 
& administered by a central operator (normally compact 
cluster)
Decentralized – the nodes have individual owners ; the owner 
can reconfigure, upgrade or even shutdown the workstation 
at any time
A slack cluster can be either controlled or managed in a 

centralized or decentralized fashion.

Homogeneity 
a homogeneous cluster – all nodes adopt the same platform
a heterogeneous cluster – nodes of different platforms, 
process migration not feasible

©BOROVSKA
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Security
Exposed intracluster communication – easy to 
implement, but an outside machine can access the 
communication paths, and thus individual nodes, 
using standard protocols (i.e., TCP/IP)

Disadvantages: 
Intracluster communication is not secure
Outside communications may disrupt intracluster
communications in an unpredictable fashion
Standard communication protocols tend to have high 
overhead
Enclosed intracluster communication – shielded from 
the outside world,  a disadvantage is the lack of a 
standard for efficient, enclosed intracluster
communication

©BOROVSKA
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Dedicated cluster
Typically installed in a deskside rack in a central 
computer room
Typically homogeneously configured with the same 
type of nodes
Managed by a single administrator group
Typically accessed via a front-end system
Used as substitute for traditional mainframes or 
supercomputers
Installed, used & administered as a single machine
Executes both interactive and batch jobs
Enhanced throughput & reduced response time
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Mainly used to utilize idle resources in the 
nodes
Each node is usually a SMP, workstation, or 
PC, with all peripherals attached
The nodes are individually owned by multiple 
owners; the owner’s local jobs have higher 
priority than enterprise jobs
The nodes are typically geographically 
distributed
Configured with heterogeneous computer 
nodes, connected through a low-cost Ethernet
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Enterprise cluster

16

CLUSTER DESIGN ISSUES

Availability support – lots of redundancy of processors, 
memories, disks, I/O devices, networks, operating system 
images, etc.
Single system image – by clustering many workstations, we 
get a single system that is equivalent to one huge 
workstation, a megastation
Job management – batching, load balancing, parallel 
processing
Efficient communication – often use commodity networks 
(Ethernet, ATM) with standard communication protocols (high 
overheads), long wires imply larger latency, clock skew & 
cross-talking problems
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AVAILABILITY SUPPORT FOR CLUSTERING

RAS – RELIABILITY, AVAILABILITY, 
SERVICEABILITY

Reliability – measures how long a system can 
operate without a breakdown
Availability – indicates the percentage of time 
that a system is available to the user (the 
percentage of system uptime)
Serviceability – how easy it is to service the 
system, including hardware & software 
maintenance, repair, upgrade, etc.

©BOROVSKA
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The availability concept

The operate-repair cycle of a computer 
system

A system’s reliability is measured by the 
mean time to failure MTTF, which is the 
average time of operation before the 
system (or a component) fails
The metric for serviceability is the mean 
time to repair MTTR ( the av. time to repair 
the system)
Availability = MTTF/(MTTF+MTTR)©
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Single points of failure in clusters 

Single points of failure –
hardware or software 
components whose 
failure will bring down the 
entire system

©BOROVSKA
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5 possible single points of failure: (1)LAN network;
(2)LAN adapter of the server node, (3)server;         

(4)SCSI bus; (5)External disk©BOROVSKA

Single points of failure in clusters
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©BOROVSKA

Duplication of cluster resources to eliminate all 
single points of failure
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Redundant components configurations 

Hot Standby – a primary component provides 
service, a redundant backup component is ready 
(hot) to take over when the primary fails 
(economical design – one standby component to 
back up multiple primary components)
Mutual Takeover – all components are primary; 1 
component fails – its workload is distributed to other 
components
Fault-tolerant – N components deliver the 
performance of only 1 component

©BOROVSKA
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CLUSTER PRODUCTS 

Over 100 000 computer clusters are in use 
worldwide
These include both commercial products and 
custom-designed clusters
Nodes are mostly PCs, workstations, & SMP 
servers
The cluster sizes are mostly in the order of 
tens; only a few clusters exceed 100 nodes
Most clusters use commodity networks such as 
Fast or Gigabit Ethernet, FDDI rings, ATM or 
Myrinet switches besides regular LAN 
connections among the nodes

©BOROVSKA
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Cluster of SMP Servers

A visible industrial trend is to cluster a 
number of homogeneous SMP 

servers together as an integrated 
superserver

©BOROVSKA
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SYSTEM AREA 
NETWORKS

FOR PARALLEL 
COMPUTERS

©BOROVSKA
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GOALS

The job of an interconnection network in a 
parallel machine is to transfer information 
from any source node to any desired 
destination node, in support of the network 
transactions that are used to realize the 
programming model. It should accomplish 
this task with as small a latency as possible, 
and it should allow a large number of such 
transfers to take place concurrently. It 
should be inexpensive relative to the cost of 
the rest of the machine.

©BOROVSKA
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In order to overcome the limitations of the contemporary I/O 
system, in 2000 the Trade association InfiniBand, uniting 7 

industrial leaders Compaq, Dell, Hewlett-Packard, IBM, Intel, 
Microsoft и Sun Microsystems created the specification of the 

switch architecture InfiniBand.

©BOROVSKA
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Communication Performance
Simured (University of Barcelona)

http://tapec.uv.es/simured/index_en.php

©BOROVSKA

Simured.exe
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Challenges of parallel computing

The transition from sequential process of 
calculation to parallel computations on a 
parallel computer platform introduces several 
specifics at different stages of parallel 
software design and implementation. 
The latter are in close connection with the 
fundamental differences between sequential 
and parallel computations and specifics 
imposed by the development and use of 
parallel algorithms and parallel architectures.

©BOROVSKA
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Parallel programming

Parallel programming is a more complex 
intellectual process than writing 

sequential programs due to the necessity 
to embrace all of the aspects of the 

sequential programming techniques and 
in addition to solve new problems and 

meet new challenges posed by the 
parallelism involved at many different 

levels and in many different views.

©BOROVSKA
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PARALLEL PROGRAMMING 
ENVIRONMENTS

API – FLAT PARALLEL PROGRAMMING
MPI – MESSAGE PASSING INTERFACE

MPI Forum www.mpi-forum.org
MPICH2

The MPI standard & download www.mcs.anl.gov/mpi/
API – MULTITHREADED PROGRAMMING

OpenMP
The OpenMP standard & download www.openmp.org

HYBRID (MULTILEVEL) PARALLEL PROGRAMMING
MPI+OpenMP

In combination with Fortran, C, C++, Visual C

©BOROVSKA
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Parallel programming with MPI

Functions MPI_ : MPI_Init (&argc, &argv)
Default communicator : MPI_COMM_WORLD

Types of communications: 
point-to-point communication MPI_Send(),

MPI_Recv(), MPI_Isend(), MPI_Irecv (I –
initiate)

collective communication MPI_Bcast(), 
MPI_Scatter(), MPI_Gather() and

MPI_Reduce()

©BOROVSKA
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The message passing 
programming model

The standard MPI (Message 
Passing Interface) is the most 

popular specification for message 
passing, supporting parallel 

programming
Virtually, every commercial parallel 

computer supports MPI
Libraries are available freely for use 

on every cluster
©BOROVSKA
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Multiple processors, each with local 
memory
SAN supports message passing
between any pair of processors
Each task of the task graph 
becomes a process
Each process may communicate 
with any other process

©BOROVSKA

The message-passing model
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The number of parallel processes is fixed before 
starting the program
In general, this number remains constant in 
executing the program
Each process computes its local variables and 
communicates with the other processes or I/O 
devices, alternatively
Processes use communications for information 
exchange and synchronization, as well

©BOROVSKA

The message-passing model
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If the message contains data → for information 
exchange

If the message does not contain data– for 
synchronization

Advantages of the message passing model
Efficient for wide spectrum of MIMD 

architectures
Natural medium for multicomputer platforms, 

which do not support global address space
©BOROVSKA
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Debugging programs with message 
passing is easier than programs with 

global variables
It is easier to run deterministic programs

Nondeterministic behavior makes 
debugging difficult – in various executions 
of the parallel program different processes

acquire one and the same resources in 
different order

©BOROVSKA

The message-passing model
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The first version of the message passing library
PVM (Parallel Virtual Machine) is developed in
Oak Ridge National Laboratory
PVM – parallel program execution on 
heterogeneous collections of parallel and 
sequential machines
1993 г. – version 3 is published

Geist, Al, Adam Bequelin, Jack Dongarra, et all., 
“PVM: Parallel Virtual Machine: A User’s Guide 
and Tutorial for Networked Parallel Computing, 

Cambridge, MA: The MIT Press, 1994.

©BOROVSKA
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MPI_Init – initializes MPI
MPI_Comm_rank – determines the ID of a 
process
MPI_Comm_size – determines the number of 
processes
MPI_Reduce – reduction operation
MPI_Finalize – shutdown MPI
MPI_Barrier – barrier synchronization
MPI_Wtime – getting the time
MPI_Wtick – precision of the timer

©BOROVSKA

MPI Functions:
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After the initialization, every active process
becomes a member of the communicator

MPI_COMM_WORLD (default communicator)
The communicator is an opaque object, 

providing media for interprocess message 
passing

Defined communicators – processes are 
divided into independent communicating 

groups

©BOROVSKA

Functions MPI_Comm_rank
and MPI_Comm_size
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Within the communicator processes have a strict 
order
The position of the process in the communicator
is determined by its rank
In a communicator of p processes, each process
has a unique rank (ID), varying from 0 to p-1
A process may use its rank in order to find out 
for which part of the computation and data it is 
responsible for

©BOROVSKA

Parallel programming with MPI
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A process may call function MPI_Comm_rank in 
order to get its rank within the communicator
Function MPI_Comm_size may define the total 
number of processes within the communicator

Function MPI_Finalize
After finishing all MPI calls, the process calls

MPI_Finalize to release all system resources (for 
ex., the memory allocated for it)  

©BOROVSKA

Parallel programming with MPI
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Compiling MPI programs
The command depends on the specific system

% mpicc –o myprog myprog.c
This command makes the system compile the MPI 

program in file myprog.c and saves the 
executable code in file myprog

Running MPI programs
% mpirun -np 2 myprog

The flag –np shows the number of processes to be 
created

©BOROVSKA

Parallel programming with MPI
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Collective communication involves a 
group of processes, that distribute or 

gather a value or multiple values
Function MPI_Reduce

This function performs one or more 
reduction operations on values, sent by 

all the processes within the 
communicator

©BOROVSKA

COLLECTIVE COMMUNICATION
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©BOROVSKA

Function MPI_Reduce
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int MPI_Reduce (
void *operand, /* address of the 1st element*/
void *result,     /* address of the 1st result */
int count /* number of reductions */
MPI_Datatype type, /* type of elements */
MPI_Op operator,    /* reduction */
int root, /* process(rank) ← result */
MPI_Comm comm) /* communicator ID */

In spite of the fact, that only one process gets the 
global result, all processes within the 

communicator must call function MPI_Reduce, 
in order to take part in the collective 

communication!!!
©BOROVSKA
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BENEFITS OF PARALLEL EXECUTION

Functions MPI_Wtime and MPI_Wtick
In order to measure the performance – wall 
clock time (seconds) – from the start until 

the end of program execution
Generally, we ignore the time for initializing

MPI processes, the communication 
configuration of processes and the I/O 
operations of the sequential devices

©BOROVSKA
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Function MPI_Wtime
returns the number of 

seconds, counted from a 
fixed time

Function MPI_Wtick
returns the precision of 

the result, got from
MPI_Wtime.

©BOROVSKA

double MPI_Wtime (void)
double MPI_Wtick (void)

We can estimate the execution time of a code section, 
calling twice function MPI_Wtime before and after the 

section. The difference of the two values, returned by the 
function, estimates the elapsed time in seconds.

Parallel programming with MPI

62

Neither of the processes can proceed
after the barrier until all of the 

processes have reached it
If the barrier is before the first call of 

the function MPI_Wtime, all processes
will be included in the frames of the 

measured section approximately in one 
and the same time

©BOROVSKA

Function MPI_Barrier
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Prototype of the function for barrier 
synchronization :

Int MPI_Barrier (MPI_Comm comm)
Argument shows the processes of the 
communicator, taking part in barrier 

synchronization
We add local variable in function main:

double elapsed_time;
Timer is started after initializing MPI:

©BOROVSKA

Parallel programming with MPI
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MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
Elapsed_time = - MPIWtime ();
After calling MPI_Reduce we can stop the timer:
MPI_Reduce (…..);
Elapsed_time + = MPI_Wtime();

As a result we can estimate the time for the 
execution of the parallel program

©BOROVSKA

Parallel programming with MPI
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Parallel programming 
with OpenMP (Shared Memory Model)

INCREMENTAL PARALLELISM
#pragma omp <directive> [clause[ [,] clause]...]

# pragma omp <body>
#pragma omp parallel for

#pragma omp parallel sections
Clauses: firstprivate lastprivate

Synchronisation: pragma critical, reduction clause
Thread scheduling: static, dynamic, guided, run 

time

©BOROVSKA
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Parallel programming

There is only one fundamental model in the 
sequential programming used for decades without 
any significant change and that is the von 
Neumann model while parallel programming is 
imposed to rapid changes and immense variety of 
parallel programming models and paradigms. 
Moreover the programming tools, utilities and 
environments, such as compilers, utilities for 
software tuning and debugging, profiling tools and 
software frameworks, are much more advanced for 
the sequential software development compared to 
the parallel programming.

©BOROVSKA
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PARALLEL PARADIGMS

SPMD – Single Program Multiple Data 
Manager/Workers (Task Farming)

Divide and Conquer 
Working Pool

Pipeline
Phase Parallel

Asynchronous/Synchronous Iterations
©BOROVSKA
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Abstract parallel computers
PRAM – Parallel Random Access Machine

Fortune S., Wyllie J., Parallelism in Random Access 
Machine, Proceedings of ACM Symposium On 
Theory of Computing, pp. 114-118, 1978
BSP – Bulk Synchronous Parallel

Valiant L., A Bridging Model for Parallel Computation, 
Communication of ACM, Vol. 33, pp. 103 – 111, 
August 1990
Phase Parallel Model

Xu Z., Hwang K., MPP versus Clusters for Scalable 
Computing, Proceedings of the 2nd International 
Symposium on Parallel Architectures, Algorithms, 
and Networks, IEEE Computer Society Press, June, 
1996, pp.117-123

©BOROVSKA
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PARALLEL SOFTWARE DESIGN

The parallel software developers are facing 
various problems that are not common for the 

sequential programming such as the 
non-determinism of the programs, the need for 

communication and synchronization, the 
definition of tasks and sub-tasks, the data 

distribution, workload balance, deadlock and 
livelock, hazards. 

©BOROVSKA
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PARALLEL PROGRAMMING

The design and development of parallel 
software requires parallel software 
developers and system architects to work 
close together. 
Parallelism introduces additional parameters 
to be monitored and controlled in order to 
improve and optimize the parallel programs 
execution. 

©BOROVSKA
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PARALLEL PROGRAMMING
High performance quality and efficient 
implementations of parallel algorithms can be 
developed only if specific parallelism profiling and 
software tuning tools are utilized in order to monitor 
communication transactions execution, resources 
allocation, memory contents and data structures, 
inter-processors communications, static and dynamic 
processes and threads allocation. 
Usually the parallel algorithm implementations are 
highly dependant on the system architecture to be 
executed on and thus the migration form one parallel 
computer platform to another is not straightforward.

©BOROVSKA
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PARALLEL PROGRAMMING

Decomposition of the algorithm or the data;
Agglomeration of the tasks within processes and/or 
threads;
Mapping the processes, threads and/or tasks for 
execution on the parallel hardware resources;
Coordination of the parallel activities (information 
exchange, synchronization and mutual exclusion)
Balance of the parallel computational workload;
Monitoring the performance and analysis of the 
factors influencing the parallel system efficiency;

©BOROVSKA
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User interface

Visualization tools

Parallel algorithm

Implementation plan

Coding

Executable code

Experiments

Working version of parallel 
program

Specification of the parallel 
software

Tuning

Effective parallel 
implementation

Tools for process creation and 
management in the parallel system

Compilers
Libraries

Tuning utilities

Software design tools
Functional validation tools

Performance estimation tools

Tools for profiling and performance 
estimation of the parallel 

implementation

Fig. 1. The process of parallel software design and the tools utilized at each stage
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Parallel software design follows the same 
stages as the sequential software design: 
(1) specification of the requirements to the 
software, (2) design and coding, (3) tuning 
and testing. 
The difference between sequential and 
parallel software design at that stage is the 
necessity of thorough planning and design of 
communication and synchronization in the 
parallel program. 
The parallel program specification has to 
respect and contain all the required 
coordination of the concurrent computations. 
The parallel computation specifics require 
also careful analyses and estimation of 
parallel solution performance in respect to the 
features of the parallel architecture. 
The parallel program granularity and the 
communication structure have to be selected 
appropriately.

©BOROVSKA
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PARALLEL PERFORMANCE

The combination of the parallel 
application and the parallel computer 
platform is called parallel system

par

seq
up T

TS =

©BOROVSKA
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The impact of the processors’ number 
over parallel system’s performance

©BOROVSKA
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ISOPERFORMANCE MODELS

ISOEFFICIENCY – characterizes system 
scalability E=f( W, n) ; if we fix the efficiency to 
some constant (e.g., 50%) and solve the efficiency 
equation for W, the resulting function is called the 
isoefficiency function of the system [Grama]

The isoefficiency metric provides a useful tool to 
predict the required workload growth rate with 

respect to the machine size increase [Kumar]
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ISOSPEED – a constant speed is preserved while 
scaling up both machine size and problem size at the 
same time [Sun & Rover]
Characterizes system scalability
ISOUTILIZATION – predicts the workload growth 
rate with respect to the increase of machine size, 
while maintaining the same utilization & it is consistent 
with execution time i.e., a more scalable system 
always has a shorter execution time.

Systems with a smaller isoutilization are 
more scalable than those with a large one.
©BOROVSKA
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Parallel Performance Laws

Amdahl‘s law
(fixed problem size)
W – computational workload

α – sequential part
1- α parallelizable part

©BOROVSKA
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Parallel Performance Laws

Gustafson’s law (1988)
(fixed time) - scalability

©BOROVSKA
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Parallel Performance Laws

Sun&Ni‘s Law (1993)
Memory Bound

©BOROVSKA
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Parallel Performance Anomalies

Normal case: 1<Sup<n
Superlinear speedup Sup>n, E>1
Decceleration Sup<1

84

Metaheuristics

The challenges

©BOROVSKA
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The problem area

Solving NP (nondeterministic 
polynomial) problems – alternatives: 
exhaustive search and heuristics
Numerous practical and theoretical 
tasks including applications in the areas 
of signal and image processing, task 
allocation, course scheduling, network 
design, graph coloring and partitioning, 
molecular analysis 

©BOROVSKA
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Taxonomy

Metaheuristics comprise high level 
algorithms, that coordinate the activities of 
heuritics algorithms, for ex. algorithms for 
local search, to find better quality solutions of 
optimization problems
Metaheuristics include algorithms that 

manage the trade-off between search 
diversification, when search is traversing 
bad areas of the search space, and 
intensification, when search is focused in 
promising areas of the search space. 

©BOROVSKA
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Trade-offs

The advantages of metaheuristics include eliminating 
or reducing premature stops in local optima solutions 
that are far from the optimal solution. 
The major disadvantage is the enormous amount of 
computational time required.
Parallel metaheuristics gives the opportunity to 
reduce computational time and improve the 
quality of solution by means of parallel search in 
multiple areas of the search space and utilizing 
various strategies for search in the search areas. 

©BOROVSKA
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Scope

Genetic algorithms
Metagenetic algorithms
Memetic algorithms
Simmulated annealing
Tabu search
Ant colony optimization
GRASP – Greedy Randomized Adaptive 
Search Procedure
VNS – Variable Neighbor Search

©BOROVSKA
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Genetic algorithms

Genetic algorithms (GA’s) provide search 
technique in computer science to find 
approximate solutions to optimization and 
search problems and present a particular 
class of evolutionary algorithms
GA’s are typically implemented as 
computational models simulating biological 
evolution. 
They perform searching a solution space for 
an optimal or near-to-optimal solution to a 
problem. 

©BOROVSKA
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Genetic algorithms

The possible solutions are searched by evolving 
populations of individuals (candidate solutions), 
represented by chromosomes, over multiple 
generations to find better solutions to the target 
problem. 
The evolution starts from initial population of random 
individuals and goes on implying the principle of 
“survival of the fittest”. 
The genetic operations comprise activities for 
producing offspring such as selection, recombination 
and mutation. 
The fitness of the individual represents the quality of 
solution achieved. 
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Genetic operations

1. Initial population
2. Selection
3. Recombination (Crossover)
4. Mutation 
5. Create Offspring
6. Evaluate fitness of individuals
7. To step 2 until convergence conditions 

are satisfied
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Metagenetic algorithms

Genetic algorithms of high level the 
purpose of which is to optimize the 
parameters of low level genetic algorithms
Parameters of genetic algorithms 
(parameter vector): possibility of 
crossover, mutation rate, selection 
strategy, crossover strategy, etc.
Search techniques utilizing self-adaptation
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Simulated annealing

Simulated annealing (SA) is a Monte 
Carlo based method for numerical 
optimization that implies the principles 
of thermodynamics and is motivated by 
an analogy to annealing in solids. 
It performs optimization without prior 
knowledge of the problem structure or 
of any particular solution strategy. 
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Annealing
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Simulated annealing
The analogy between a physical many-particle system 

and a combinatorial optimization problem is based on 
the following equivalences:

solutions in a combinatorial optimization problem are 
equivalent to states of a physical system;
the cost of a solution is equivalent to the energy of a 
state;
a control parameter plays the role of temperature, 
such that:

at high temperatures changes in energy are accepted; 
at low temperatures only decreases or smaller 
increases in energy are accepted;
if temperature approaches zero no increases are 
accepted at all.
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Simulated annealing

The number of moves at each temperature is referred 
to as "chain length" and can be regarded as Markov 
chain. 
Cooling schedule of the simulated annealing is 
determined by the chain length and the rate at which 
the temperature decreases from chain to chain:

©BOROVSKA

where, T0 is the initial temperature, TN is the final 
temperature, and Tn is the temperature value at iteration n.

Given an appropriate cooling schedule and an infinite 
amount of time the algorithm will converge to the real 

optimum.

),,,( 0 nNTTfT nN =
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Memetic algorithms

Memetic algorithms are 
forms of genetic 

algorithms,  that are 
combined with local 

search techniques, like 
simulated annealing
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Tabu search

Tabu search implies generating and 
evaluating mutations of individual solutions in 

the search space
The individual of the least fitness is selected
Tabu list is constructed and maintained in 

respect to the complete and partial solutions 
in order to eliminate cyclic searches and to 

provide searching on a large scale
Solutions containing elements of the tabu list, 
are prohibited, and are being updated when 

moving within the search space.
©BOROVSKA
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Ant colony optimization (ACO)

Multi-agents (ants) search for finding 
out small productive areas in the search 
space
Applied for problems, where no global 
perspective can be analyzed and, 
hence, no other methods can be applied
The quality of solution is associated with 
the aggregate quantity of pheromones 
produced by the ants
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Greedy Randomized Adaptive Search 
Procedure (GRASP)

Inherently, GRASP is a multistart procedure, 
applied successfully for finding good quality 
solution in solving discrete combinatorial
optimization problems. 
Metaheuristics, based on the concepts of 
GRASP and VNS (Various Neighbor Search)
requires two algorithms, the first algorithm is 
responsible for generating the initial solution, 
and the second algorithm performs the local 
search. 
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Parallel Metaheuristics - Focus

Parallel Evolutionary 
Computing
Parallel Simulated 
Annealing
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Parallel Evolutionary Computing

The major effect of implementing parallel 
genetic algorithms (PGA’s) is obtaining 
speedup in solving optimization problems.
PGA’s provide the opportunity to apply 
different strategies and techniques to improve 
the convergence of the algorithm and to 
facilitate the quality of solution.
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Strategies for Designing Parallel Genetic 
Algorithms for Multicomputer Platforms
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TRAVELLING SALESMAN 
PROBLEM

The TSP is a widely explored NP-hard 
combinatorial optimization problem the 
purpose of which is to find out the shortest 
tour for the salesman for a given set of cities 
to be visited. 
That tour is supposed to start from one city, to 
traverse all the cities visiting each city just 
once and ending at the starting city i.e. the 
path is cyclic. The length of that tour should 
be minimal. 
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THE GENETIC APPROACH

The chromosomes of the individuals 
represent a tour of the cities, and fitness 
represents the length of the path. 
The fitness of each chromosome is 
calculated. 
The best individual is always selected and is 
not subjected to genetic operations i.e. elitism 
is maintained. 
A pair of chromosomes to be recombined is 
selected randomly.
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THE GENETIC APPROACH
One-point cross-over is applied – the resulting 
chromosome of the offspring is formed by copying the part 
of the chromosome of the first parent up to the point of 
cross-over and the second part is a copy of the 
chromosome of the second parent from the point of cross-
over to the end of the chromosome. 
After the recombination of all pairs of chromosomes they 
are subjected to mutation with a specified rate – two 
randomly chosen genes of randomly selected 
chromosomes are selected and they change places i.e. two 
random cities change places in the routes constructed so 
far. 
The fitness of the newly generated offspring is calculated 
and the genetic operations are repeated until the 
convergence check is satisfactory.
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THE GENETIC APPROACH
The genetic mutation is a random change that occurs in the 
characteristics of a gene. 
Mutation tends to bring about major unpredictable changes 
in the fitness of an individual. 
Increasing the number of mutations results in increasing 
the algorithm’s freedom to search outside the current 
region of variable space. 
Mutation rate (µ) is a limitation ratio for the number of 
mutation events on each generation. Different mutation 
strategies have been applied to facilitate the convergence 
of PGA. 
The variation level of mutation is beneficial in parallel 
environments.

©BOROVSKA
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Parallel Software
Parallel programming 
environment MPICH 
Version 1.2.4. 
Programming language 
compiler Microsoft Visual 
C++ 2005. 
Parallel profiling -
Jumpshot Version 3.0. 
Parallel genetic 
algorithms are 
implemented in C++ using 
MPI and OpenMP. 
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Target Computer Platform
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Solving the TSP in Parallel
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The parallel model of genetic computation 
based on the manager/workers parallel paradigm
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Parallelism Profiling and 
Benchmarking
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Scalability of machine size

Gantt’s chart 
for the parallel genetic computation 

of TSP 

for 1000 towns

Communication Transactions Histogram
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Parallel computational model for solving the TSP by genetic 
approach with SPMD parallel paradigm 

and chromosome migration
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Parallel Implementations Based on Island 
Models with Chromosomes Migration
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List of Experiments
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Parallelism Profiling and 
Benchmarking
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Island Models with 
Parallel Mutation Strategies

©BOROVSKA

Parallel genetic computation with periodic circular migration 
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Experimental 
variable genetic parameters
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Experimental 
Parallel Mutation Strategies 
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Parallelism Profiling and 
Benchmarking
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Migration Policies 
for Island Genetic Algorithms

©BOROVSKA

one way local (“slow”) best chromosomes migration –
unidirectional propagation of migrants (best individuals) to the nearest 
neighbor island, circular topology
two way local (“fast”) best chromosomes migration - bidirectional 
propagation of migrants (best individuals) to the nearest neighbor 
islands, circular topology
global (“instant”) best chromosomes migration – broadcast 
propagation of migrants (best individuals) to all islands, star topology
one way local (“slow”) random chromosomes migration –
unidirectional propagation of migrants (random individuals) to the 
nearest neighbor island, circular topology
two way local (“fast”) random chromosomes migration -
bidirectional propagation of migrants (random individuals) to the 
nearest neighbor islands, circular topology
global (“instant”) random chromosomes migration – broadcast 
propagation of best migrants (random individuals) to all islands, star 
topology
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Migration Topologies 
for Island Genetic Algorithms
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Migration Topologies 
for Island Genetic Algorithms
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Parallelism Profiling
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Speedup
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CONCLUSIONS

The experimental results show that 
the parallel coarse-granule 
implementation scales almost 
proportionally in respect to the 
machine size. 
The speedup slightly slows down 
increasing the problem size from 
100 to 600 cities.
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Quality of Solution Analysis

The percentage quality difference D of 
one run of PGA on the multicomputer

platform compared to the best solution of TSP 
is calculated as: 

- length of the shortest tour found by the parallel 
genetic algorithm;

-length of the shortest tour.
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Fitness Statistics
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QUALITY OF SOLUTION 
ANALYSIS (pvmr0.05 )
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Percent Quality Difference for the 
Parallel Mutation Strategies 
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Quality Difference
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CONCLUSIONS

The variation of mutation rate for each
generation and for each process can improve
the performance and get the best fitness of 
PGA. 
The best fitness achieved experimentally is
for the case of parallel fixed mutation rates for
each local evolution. 
This result is explained by the fact that in this
case we get a great diversity of populations
and a greater chance to evolve near optimal
population.

132

Migration Policies
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Migration Policies
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Two way circular migration Best chromosomes
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Migration Policies
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Two way circular migration Best chromosomes
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The Room Assignment Problem

The room assignment problem attempts to 
arrange N persons in N/2 rooms minimizing 
the cost function defined as a sum of conflicts 
between the room mates. 
The input data is a conflict table C of size 
N×N, where C[i,j] is a coefficient, denoting 
personal dislikes in case person i and person 
j share one and the same room. 
The table is symmetric with respect to the 
main diagonal.
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Simulated Annealing
The algorithm is iterative. 
Iteration involves generating a candidate solution to the 
problem under investigation and estimation of its cost. 
The solution is then perturbed. 
If the perturbation results in a decrease (or no change) in 
the cost then it is accepted. 
If the new cost is greater, then the perturbation is accepted 
with a probability , 

where ∆ is the difference between the old and new value of 
the cost function and Т is referred to as a temperature. 
The number of moves at each temperature is referred to as 
"chain length" and can be regarded as Markov chain. 
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The Room Assignment Problem
The solution to the problem is represented as an 
assignment of each person to a given room;
Persons are placed in different rooms randomly;
The cost function is the simple sum of the dislike 
coefficients of all persons in the same room.
SA operates by swapping two randomly selected 
persons, i.e. exchanging their rooms. The change in 
cost resulting from the swap is evaluated. According 
to the SA algorithm a decrease in cost is accepted 
and an increase is accepted only if it satisfies a 
predefined probability equation. 
In order to compute the change in cost it is not 
necessary to reevaluate the cost of the entire current 
assignment, but only the change caused by the 
persons that change their rooms.
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Parallel 
computational 

model of 
simulated 

annealing for 
the room 

assignment 
problem 
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Parallel Performance 
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Cost Function Dynamics 
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Cost Function Dynamics
Dynamics of cost function for T0=1
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Dynamics of cost function for T0=10
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Quality of Solution 
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Parallel random generators

Perfect RNG does not exist (no correlations 
of the numbers within the sequence)
Linear congruential RNG, lagged Fibonacci 
RNG (C language)
Methods for parallel RNG - manager/workers, 
“leapfrog”, sequence splitting, parametrization
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leapfrog

sequence splitting
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The Influence of the Parallel Random Generator 
and the Stopping Criteria
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The Influence of the Parallel Random Generator 
and the Stopping Criteria
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Parallel performance
The speedup gained by parallel independent runs - the 
results show almost linear speedup when increasing the 
number of parallel processes. 
The speedup is larger for greater number of persons i.i. 
greater computational workload in finding the final solution. 
Obviously, utilization of more parallel processes provide 
better quality solution for fixed number of iterations of the 
algorithm due to higher diversification of the state space 
searches provided by the parallel computations in case 
parallel random generator guarantees uncorrelated or 
slightly correlated sequences on the different processors. 
The solution quality is better for greater parallel machine 
size and larger parallel computational workload (the number 
of iterations), i.e. the parallel algorithm scales well with 
respect to the size of the parallel machine and the size of 
parallel application. 



74

147

Thank You for the Attention!
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