
Distributed Spatio-Temporal
Similarity Search

by
Demetris Zeinalipour

University of Cyprus &
Open University of Cyprus

Tuesday, July 4th, 2007, 15:00-16:00, Room #147 Building 12
European Thematic Network for Doctoral Education in Computing,

Summer School on Intelligent Systems
Nicosia, Cyprus, July 2-6, 2007

http://www.cs.ucy.ac.cy/~dzeina/

2

Disclaimer
Feel free to use any of the following slides for
educational purposes, however kindly
acknowledge the source.

We would also like to know how you have used
these slides, so please send me emails with
comments or suggestions.

This presentation is available at the URL:
http://www.cs.ucy.ac.cy/~dzeina/talks.html

* Thanks to Michalis Vlachos & Spiros Papadimitriou (IBM TJ
Watson) and Eamonn Keogh (University of California – Riverside)
for many of the illustrations presented in this talk.

3

Acknowledgements

This presentation is mainly based on the
following paper:

``Distributed Spatio-Temporal Similarity Search’’
D. Zeinalipour-Yazti, S. Lin, D. Gunopulos,
ACM 15th Conference on Information and
Knowledge Management, (ACM CIKM 2006),
November 6-11, Arlington, VA, USA, pp.14-23,
August 2006.

Additional references can be found at the end!

4

Presentation Objectives

• Objective 1: Spatio-Temporal Similarity
Search problem. I will provide the algorithmics
and “visual” intuition behind techniques in
centralized and distributed environments.

• Objective 2: Distributed Top-K Query
Processing problem. I will provide an overview
of algorithms which allow a query processor to
derive the K highest-ranked answers quickly
and efficiently.

• Objective 3: To provide the context that glues
together the aforementioned problems.

5

Spatio-Temporal Data (STD)

• Spatio-Temporal Data is characterized by:
– A temporal (time) dimension.
– At least one spatial (space) dimension.

• Example: A car with a GPS navigator
– Sun Jul 1st 2007 11:00:00 (time-dimension)
– Longitude: 33° 23' East (X-dimension)
– Latitude: 35° 11' North (Y-dimension)

6

Spatio-Temporal Data

• 1D (Dimensional) Data
– A car turning left/right

at a static position with a moving floor
– Tuples are of the form: (time, x)

• 2D (Dimensional) Data
– A car moving in the plane.
– Tuples are of the form: (time, x, y)

• 3D (Dimensional) Data
– An Unmanned Air Vehicle
– Tuples are of the form: (time, x, y, z)

X

X

Y

T

For simplicity, most examples we utilize in this
presentation refer to 1D spatiotemporal data.

T

dolphins

7

Centralized Spatio-Temporal Data
• Centralized ST Data

When the trajectories are stored in a
centralized database.

• Example: Video-tracking / Surveillance

Camera performs tracking of
body features (2D ST data)

store

capture

t t+1 t+2

8

Distributed Spatio-Temporal Data
Distributed Spatio-Temporal Data

– When the trajectories are vertically
fragmented across a number of remote cells.

– In order to have access to the complete
trajectory we must collect the distributed
subsequences at a centralized site.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

9

Distributed Spatio-Temporal Data

• Example I (Environment Monitoring)
– A sensor network that records the motion of

bypassing objects using sonar sensors.

10

Distributed Spatio-Temporal Data
• Example II (Enhanced 911):

– e911 automatically associates a physical
address with every mobile user in the US.

– Utilizes either GPS technologies or signal
strength of the mobile user to derive this info.

11

Similarity

• A proper definition usually depends on the
application.

• Similarity is always subjective!

12

Similarity

• Similarity depends on the features we consider
(i.e. how we will describe the sequences)

13

Similarity and Distance Functions
• Similarity between two objects A, B is usually

associated with a distance function
• The distance function measures the distance

between A and B.
Low Distance between two objects

==
High similarity

• Metric Distance Functions (e.g. Euclidean):
– Identity: d(x,x)=0
– Non-Negativity: d(x,y)>=0
– Symmetry: d(x,y) = d(y,x)
– Triangle Inequality: d(x,z) <= d(x,y) + d(y,z)

• Non-Metric (e.g., LCSS, DTW): Any of the above
properties is not obeyed.

14

Similarity Search
Example 1: Query-By-Example in Content Retrieval

• Let Q and m objects be expressed as vectors of
features e.g. Q=(“color=#CCCCCC”, ”texture=110”,
shape=“Λ”, .)

• Objective: Find the K most similar pictures to Q

Q

O1 O2 O3

Q=(q1,q2,…,qm)

Oi=(oi1, oi2, …, oim)

O4 O5

• Answers are fuzzy, i.e., each answer is associated with
a score (O3,0.95), (O1,0.80), (O2,0.60),….

∑
=

=
n

j

oijqisimwjOiQScore
1

),(*),(

15

Spatio-Temporal Similarity Search
Examples

- Habitant Monitoring: “Find which animals
moved similarly to Zebras in the National Park
for the last year”. Allows scientists to
understand animal migrations and interactions”

- Big Brother Query: “Find which people
moved similar to person A”

16

Spatio-Temporal Similarity Search

Query

D = 7.3

D = 10.2

D = 11.8

D = 17

D = 22

Distance

?

• Implementation
Compare the query with all the sequences in
the DB and return the k most similar sequences
to the query.

K

17

Spatio-Temporal Similarity Search

- Clustering: “Place trajectories in ‘similar’ groups”

- Classification: “Assign a trajectory to the most
‘similar’ group”

?

?
?

Having a notion of similarity allows us to perform:

18

Presentation Outline
Definitions and Context
Overview of Trajectory Similarity Measures

• Euclidean Matching
• DTW Matching
• LCSS Matching
• Upper Bounding LCSS Matching

Distributed Spatio-Temporal Similarity Search
• The UB-K Algorithm
• The UBLB-K Algorithm
• Experimentation

Distributed Top-K Algorithms
• Definitions
• The TJA Algorithm

Conclusions

19

Trajectory Similarity Measures
A. Euclidean Matching
The trajectories are matched 1:1

B. Dynamic Time Warping Matching
Copes with out-of-phase matches (using a warping windows)

Longest Common SubSequence Matching
Copes with out-of-phase matches and outliers (it ignores them)

20

Euclidean Distance

∑
=

−=
n

i

pp
p ibiaL

1

/1)|][][|(

0 20 40 60 80 100

• Most widely used distance measure
• Defines (dis-)similarity between sequences

A and B as (1D case):

A={a1,a2,…,an}

B={b1,b2,…,bn}

P=1 Manhattan Distance

P=2 Euclidean Distance

P=INF Chebyshev Distance

21

Euclidean Distance

• Euclidean vs. Manhattan distance:
- Euclidean Distance (using Pythagoras theorem)
is 6 x √2 = 8.48 points): Diagonal Green line
- Manhattan (city-block) Distance (12 points):
Red, Blue, and Yellow lines

0 1 2 3 4 5 6
0
1
2
3
4
5
6 a1

b1

2-Dimensional
Scenario

22

Disadvantages of Lp-norms
• Disadvantage 1: Not flexible to out-of-phase

matching (i.e., temporal distortions)
– e.g., Compare the following 1-dim sequences:

A={1112234567}
B={1112223456}
Distance = 9

– Green Lines indicate successful matching, while red
dots indicate an increase in distance.

• Disadvantage 2: Not flexible to outliers (spatial
distortions).

A={1111191111}
B={1111101111}
Distance = 9

Many studies show that
the Euclidean Distance
Error rate might be as
high as ~30%!

23

Dynamic Time-Warping
Flexible matching in time: Used in speech
recognition for matching words spoken at different
speeds (in voice recognition systems)

----Mat-lab--------------------------

Same idea can work
equally well for generic
spatio-temporal data…

Sound signals

---Maat--llaabb-------------------

24

Euclidean distance
A1 = [1, 1, 2, 2]

d = 1
A2 = [1, 2, 2, 2]

Euclidean distance
A1 = [1, 1, 2, 2]

d = 1d = 1
A2 = [1, 2, 2, 2]

Dynamic Time-Warping
How does it work?

The intuition is that we span the matching of an element X
by several positions after X.

DTW distance
A1 = [1, 1, 2, 2]

d = 0
A2 = [1, 2, 2, 2]

DTW distance
A1 = [1, 1, 2, 2]

d = 0d = 0
A2 = [1, 2, 2, 2]

Euclidean: One-to-one alignment

DTW: One-to-many alignment

25

Dynamic Time-Warping

A

B
Recursive Definition
L[i,j] = LpNorm(Ai,Bj) +

min{ L(i-1, j-1),
L(i-1, j),
L(i, j-1) }

Recursive Definition
L[i,j] = LpNorm(Ai,Bj) +

min{ L(i-1, j-1),
L(i-1, j),
L(i, j-1) }

• Implemented with dynamic programming (i.e., we
exploit overlapping sub-problems) in O(|A|*|B|).
– Create an array that stores all solutions for all possible

subsequences.

26

Dynamic Time-Warping
The O(|A|*|B|) time complexity can be reduced to
O(δ*min(|A|,|B|)) by restricting the warping path to
a temporal window δ (see LCSS for more details).

A

B
We will now only fill the
highlighted portion of the
Dynamic Programming matrix

Warping window is δ
A1 = [1, 1, 1, 1, 10, 2]

A2 = [1, 10, 2, 2]

Warping window is δ
A1 = [1, 1, 1, 1, 10, 2]

A2 = [1, 10, 2, 2]

δ

δ

27

Dynamic Time-Warping
• Studies have shown that warping window
δ=10% is adequate to achieve high degrees of
matching accuracy.

• The Disadvantages of DTW:
– All points are matched (including outliers)
– Outliers can distort distance

28

Longest Common Subsequence
• The Longest Common SubSequence (LCSS) is

an algorithm that is extensively utilized in text
similarity search, but is equivalently applicable in
Spatio-Temporal Similarity Search!

• Example:
– String: CGATAATTGAGA
– Substring (contiguous): CGA
– SubSequence (not necessarily contiguous): AAGAA

• Longest Common Subsequence: Given two
strings A and B, find the longest string S that is a
subsequence of both A and B;

29

Longest Common Subsequence
• Find the LCSS of the following 1D-trajectory

A = 3, 2, 5, 7, 4, 8, 10, 7
B = 2, 5, 4, 7, 3, 10, 8, 6
LCSS = 2, 5, 4, 7

• The value of LCSS is unbounded: it depends
on the length of the compared sequences.

• To normalize it in order to support sequences of
variable length we can define the LCSS distance:

• LCSS Distance between two trajectories

dist(A, B) = 1 – LCSS(A,B)/min(|A|,|B|)
e.g. in our example dist (A,B) = 1 – 4/8 = 0.5

30

LCSS Implementation
• Implemented with a similar Dynamic

Programming Algorithm (i.e., we exploit
overlapping subproblems) as DTW but with a
different recursive definition:

A = 3, 2, 5, 7, 4, 8, 10, 6
B = 2, 5, 4, 7, 3, 10, 8, 6

⎪
⎩

⎪
⎨

⎧
+=

))(,(),),((max(

))(),((1

0

),(

BTailALCSSBATailLCSS

BTailATailLCSSBALCSS

, If A or B is empty

, If Head[A]=Head[B]

, otherwise

TAIL Head

31

LCSS Implementation
Phase 1: Construct DP Table
int A[] = {3,2,5,7,4,8,10,7};
int B[] = {2,5,4,7,3,10,8,6};
int L[n+1][m+1]; // DP Table

// Initialize first column and row to assist the DP Table
for (i=0;i<n+1;i++) L[i][0] = 0;

for (j=0;j<m+1;j++) L[0][j] = 0;

for (i=1;i<n+1;i++) {

for (j=1;j<m+1;j++) {

if (A[i-1] == B[j-1]) {
L[i][j] = L[i-1][j-1] + 1;

} else {
L[i][j] = max(L[i-1][j], L[i][j-1]);

}
}

DP Table L[][]

4444432107

44433321010

4433332108

3333332104

3333322107

2222222105

1111111102

1111000003

000000000

681037452

Running Time O(|A|*|B|)

Solution

LCSS(A,B) = 4

n

m
B|

A

32

LCSS Implementation
Phase 2: Construct LCSS Path

Beginning at L[n-1][m-1] move backwards until you
reach the left or top boundary

i = n; j = m;
while (1) {

// Boundary was reached - break
if ((i == 0) || (j == 0)) break;

// Match
if (A[i-1] == B[j-1]) {

printf("%d,", A[i-1]);
// Move to L[i-1][j-1] in next round
i--; j--;

} else {
// Move to max { L[i][j-1],L[i-1][j] } in next round
if (L[i][j-1] >= L[i-1][j]) j--;
else i--;

}
}

DP Table L[][]

4444432107

44433321010

4433332108

3333332104

3333322107

2222222105

1111111102

1111000003

000000000

681037452

Running Time O(|A|+|B|)
LCSS: 7,4,5,2

m,n

33

Speeding up LCSS Computation

• The DP algorithm requires O(|A|*|B|) time.
• However we can compute it in O(δ(|A|+|B|))

time, similarly to DTW, if we limit the matching
within a time window of δ.

• Example where δ=2 positions

* Finding Similar Time Series, G. Das, D. Gunopulos, H. Mannila, In PKDD 1997.

δ

A
4407

444010

43308

33304

33207

22205

11102

0003

000000000

681037452

δ=2LCSS: 10,7,5,2

B

a1

34

LCSS 2D Computation

• The LCSS concept can easily be extended to
support 2D (or higher dimensional) spatio-
temporal data.

• The following is an adaptation to the 2D case,
where the computation is limited in time (by
window δ) and space (by window ε)

1 2 1 2

0, if or is empty

1 ((), ()),

(,) if - and

(((),), (, ()),

otherwis

i i

A B

LCSS Tail A Tail B

LCSS A B a b i i

max LCSS Tail A B LCSS A Tail B

ε δ
+

= < − <

e

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

35

Longest Common Subsequence

ignore majority of noise

match

match

Advantages of LCSS:
– Flexible matching in time

– Flexible matching in space (ignores outliers)
– Thus, the Distance/Similarity is more

accurate!

36

Summary of Distance Measures

Noise Robustness
(outliers)

O(n*δ)LCSS

O(n*δ)DTW

O(n)Euclidean

1:1 MatchingElastic Matching
(out-of-phase)

Complexity* Method

* Assuming that trajectories have the same length

Any disadvantage with LCSS?

37

Speeding Up LCSS

• O(δ*n) is not always very efficient!
• Consider a space observation system that

records the trajectories for millions of stars.
• To compare 1 trajectory against the trajectories

of all stars it takes O(δ*n*trajectories) time .

• Solution: Upper bound the LCSS matching
using a Minimum Bounding Envelope
– Allows the computation of similarity between

trajectories in O(n*trajectories) time!

38

Upper Bounding LCSS*

, ,Theorem: (,) ((),)LCSS Q A LCSS MBE Q Aδ ε δ ε≤

* Indexing multi-dimensional time-series with support for multiple distance measures,
M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh, In KDD 2003.

10 20 30 40 50 60 70

40 pts 6 pts

2δ

ε

Q
A QA

ε
2δ

40 pts 6 pts

ΜΒΕ: Minimum Bounding Envelope

39

Presentation Outline
Definitions and Context
Overview of Trajectory Similarity Measures

• Euclidean Matching
• DTW Matching
• LCSS Matching
• Upper Bounding LCSS Matching

Distributed Spatio-Temporal Similarity Search
• Definitions
• The UB-K and UBLB-K Algorithms
• Experimentation

Distributed Top-K Algorithms
• Definitions
• The TJA Algorithm

Conclusions

40

Distributed Spatio-Temporal Data

• Recall that trajectories are segmented across n
distributed cells.

41

System Model
• Assume a geographic region G segmented into

n cells {C1,C2,C3,C4}

• Also assume m objects moving in G.
• Each cell has a device that records the spatial

coordinated of each passing object.

• The coordinates remain locally at each cell

42

Problem Definition
Given a distributed repository of trajectories
coined DΑΤΑ, retrieve the K most similar
trajectories to a query trajectory Q.

• Challenge: The collection of all trajectories to a
centralized point for storage and analysis is
expensive!

QDATA:

43

Distributed LCSS
• Since trajectories are segmented over n cells the

computation of LCSS now becomes difficult!

– The matching might happen at the boundary
of neighboring cells.

– In LCSS matching occurs sequentially.

Cell 1 Cell 2 Cell 3 Cell 4

44

Distributed LCSS

• Instead of computing the LCSS directly, we
measure partial lower bounds (DLB_LCSS) and
partial upper bound (DUB_LCSS)
– i.e., instead of LCSS(A0,Q)=20 we compute

LCSS(A0,Q)=[15..25]

• We then process these scores using some
novel algorithms we will present next and derive
the K most similar trajectories to Q.

• Lets first see how to construct these scores…

45

10 20 30 40 50 60 70

40 pts 6 pts

2δ

ε

Q
A QA

ε
2δ

40 pts 6 pts

ΜΒΕ: Minimum Bounding Envelope

Distributed Upper Bound on LCSS

Cell 1 Cell 2 Cell 3 Cell 4

, ,
1

((),) (,)
n

ij i
j

LCSS MBE Q A LCSS Q Aδ ε δ ε
=

≥∑
DUB_LCSS:

46

Distributed Lower Bound on LCSS

• We execute LCSS(Q, Ai) locally at each cell
without extending the matching beyond:
– The Spatial boundary of the cell
– The Temporal boundary of the local Aix.

• At the end we add the

partial lower bounds
and construct
DLB_LCSS:

∑ =
≤

n

j
AiQLCSSAijQLCSS

1 ,,),(),(εδεδ

Cell1 Cell2

LCSS=10

LCSS=4+5=9

47

The METADATA table
• METADATA Table: A vector that

contains bounds on the similarity
between Q and trajectories Ai

• Problem: Bounds have to be
transferred over an expensive
network

Query
Processor

C1, C2, C3

A7,29,35
A3,27
A9,26
A0,25
A2,19
A4,18

....

A2,4,6
A0,6,8
A4,8,10
A7,7,9
A3,9,11
A9,7,9

....

A4,3,5
A2,4,6
A0,5,7
A3,4,6
A9,8,10
A7,11,13

....

A4,1,3
A0,8,10
A2,5,7
A9,5,7
A3,8,10
A7,11,13

....

id,lb,ub
c3

id,lb,ub
c2

id,lb,ub
c1

id,ub
METADATA

+
+

=

network

48

The METADATA table
• Option A: Transfer all bounds towards QP and

then join the columns.
– Too expensive (e.g., Millions of trajectories)

• Option B: Construct the METADATA table
incrementally using a distributed top-k algorithm
– Much Cheaper! - TJA and TPUT algorithms will be

described at the end!

A7,29,35
A 3,27
A 9,26
A 0,25
A 2,19
A 4,18

....

id ,ub
M ETAD ATA

K

TJAK

K

K

K

K

K

K

K

K

49

The UB-K Algorithm
• An iterative algorithm we developed to find the K

most similar trajectories to Q.

• Main Idea: It utilizes the upper bounds in the
METADATA table to minimize the transfer of
DATA.

Q

DATA
A7,29,35

A 3,27
A 9,26
A 0,25
A 2,19
A 4,18

....

id ,ub
M ETAD ATA

50

UB-K Execution
Query: Find the K=2 most similar trajectories to Q

Λ=5

TJA ≥?
Λ=3

TJA

Q

A4

LCSS(Q,A4)=23

Retrieve the
sequences A4,

A2

Stop if

Kth LCSS

>=

Λth UB

=>Kth LCSS

23

22

K=2

51

The UBLB-K Algorithm

• Also an iterative algorithm with the same
objectives as UB-K

• Differences:
– Utilizes the distributed LCSS upper-bound

(DUB_LCSS) and lower-bound (DLB_LCSS)
– Transfers the DATA in a final bulk step rather

than incrementally (by utilizing the LBs)

52

Note: Since the Kth LB 21 >= 20, anything below
this UB is not retrieved in the final phase!

Λ=3

TJA ≥?

UBLB-K Execution
Query: Find the K=2 most similar trajectories to Q

TJA

Λ=5

≥?

Stop if

Kth LB

>=

Λth UB

K=2

Kth-LB

Q

A4

LCSS(Q,A4)=23

53

Experimental Evaluation
• Comparison System

– Centralized
– UB-K
– UBLB-K

• Evaluation Metrics
– Bytes
– Response Time

• Data
– 25,000 trajectories generated over the road

network of the Oldenburg city using the
Network Based Generator of Moving Objects*.

* Brinkhoff T., “A Framework for Generating Network-Based Moving Objects”. In GeoInformatica,6(2), 2002.

54

Performance Evaluation

• Remarks
– Bytes: UBK/UBLBK transfers 2-3 orders of

magnitudes fewer bytes than Centralized.
• Also, UBK completes in 1-3 iterations while UBLBK requires

2-6 iterations (this is due to the LBs, UBs).

– Time: UBK/UBLBK 2 orders of magnitude less time.

100ΜΒ

100ΚΒ

16min

4 sec

55

Presentation Outline
Definitions and Context
Overview of Trajectory Similarity Measures

• Euclidean Matching
• DTW Matching
• LCSS Matching
• Upper Bounding LCSS Matching

Distributed Spatio-Temporal Similarity Search
• Definitions
• The UB-K and UBLB-K Algorithms
• Experimentation

Distributed Top-K Algorithms
• Definitions
• The TJA Algorithm

Conclusions

56

Definitions
Top-K Query (Q)
Given a database D of n objects, a scoring
function (according to which we rank the
objects in D) and the number of expected
answers K, a Top-K query Q returns the K
objects with the highest score (rank) in D.

Objective:
Trade # of answers with the query execution cost, i.e.,
• Return less results (K<<n objects)
• …but minimize the cost that is associated with

the retrieval of the answer set (i.e., disk I/Os,
network I/Os, CPU etc)

57

Definitions
The Scoring Table
An m-by-n matrix of scores expressing the
similarity of Q to all objects in D (for all attributes).

In order to find the K highest-ranked answers we
have to compute Score(oi) for all objects
(requires O(m*n) time).

c1 c2 c3 c4 c5
o1, 91
o3, 90
o0, 61
o4, 07
o2, 01

o1, 92
o3, 75
o4, 70
o2, 16
o0, 01

o3, 74
o1, 56
o2, 56
o0, 28
o4, 19

o3, 67
o4, 67
o1, 58
o2, 54
o0, 35

TOP-1

o3, 405
o1, 363
o4, 207
o0, 188
o2, 175

o3,405o3, 99
o1, 66
o0, 63
o2, 48
o4, 44

{m
trajectories

n cells

Score

TOTAL SCORE

trajectoryID

58

Threshold Join Algorithm (TJA)
• TJA is our 3-phase algorithm that

optimizes top-k query execution in
distributed (hierarchical) environments.

• Advantage:
– It usually completes in 2 phases.
– It never completes in more than 3 phases

(LB Phase, HJ Phase and CL Phase)
– It is therefore highly appropriate for distributed

environments
“The Threshold Join Algorithm for Top-k Queries in Distributed Sensor
Networks", D. Zeinalipour-Yazti et. al, Proceedings of the 2nd international
workshop on Data management for sensor networks DMSN (VLDB'2005),
Trondheim, Norway, ACM Press; Vol. 96, 2005.

59

Step 1 - LB (Lower Bound) Phase
• Each node sends its K

highest objectIDs

• Each intermediate node
performs a union of the
received results (defined
as τ):

c1

c3

c2

c4

c5

5:

3:

2,3,4,5:

TJA
1) LB Phase

4,5:

4U5

2,3U4,5

U

1

1,2,3,4,5
Ltotal
{1,3}

Occupied Oij

Empty Oij

c1 c2 c3 c4 c5
o3, 99
o1, 66
o0, 63
o2, 48
o4, 44

o1, 91
o3, 90
o0, 61
o4, 07
o2, 01

o1, 92
o3, 75
o4, 70
o2, 16
o0, 01

o3, 74
o1, 56
o2, 56
o0, 28
o4, 19

o3, 67
o4, 67
o1, 58
o2, 54
o0, 35

LB

{o3, o1}

Query: TOP-1

Τ=

60

Step 2 – HJ (Hierarchical Join) Phase
• Disseminate τ to all nodes
• Each node sends back

everything with score above all
objectIDs in τ.

• Before sending the objects,
each node tags as incomplete,
scores that could not be
computed exactly (upper bound)

TJA
2) HJ Phase

c1

c3

c2

c4

c5

5:

3:

2,3,4,5:

4,5:

4 5

2,3 4,5

1,2,3,4,5
Rtotal
{1,3,4}

Occupied Oij

Empty Oij

Incomplete Oij

U+

U+

U+

o3, 405
o1, 363
o4',354

c1 c2 c3 c4 c5
o3, 99
o1, 66
o0, 63
o2, 48
o4, 44

o1, 91
o3, 90
o0, 61
o4, 07
o2, 01

o1, 92
o3, 75
o4, 70
o2, 16
o0, 01

o3, 74
o1, 56
o2, 56
o0, 28
o4,19

o3, 67
o4, 67
o1, 58
o2, 54
o0, 35

HJ

} Complete

Incomplete

61

Step 3 – CL (Cleanup) Phase

Have we found K objects with a complete score?
Yes: The answer has been found!
No: Find the complete score for each
incomplete object (all in a single batch phase)

• CL ensures correctness!
• This phase is rarely required in practice.

o3, 405
o1, 363
o4, 207
o0, 188
o2, 175

c1 c2 c3 c4 c5
o3, 99
o1, 66
o0, 63
o2, 48
o4, 44

o1, 91
o3, 90
o0, 61
o4, 07
o2, 01

o1, 92
o3, 75
o4, 70
o2, 16
o0, 01

o3, 74
o1, 56
o2, 56
o0, 28
o4, 19

o3, 67
o4, 67
o1, 58
o2, 54
o0, 35

TOP-5

o3,405

62

Conclusions
• I have presented the Spatio-Temporal

Similarity Search problem: find the most
similar trajectories to a query Q when the
target trajectories are vertically fragmented.

• I have also presented Distributed Top-K
Query Processing algorithms: find the K
highest-ranked answers quickly and efficiently.

• These algorithms are generic and could be
utilized in a variety of contexts!

63

Bibliography
• (PAPER) ``Distributed Spatio-Temporal Similarity Search’’, D.

Zeinalipour-Yazti, S. Lin, D. Gunopulos, ACM 15th Conference on
Information and Knowledge Management, (ACM CIKM 2006),
November 6-11, Arlington, VA, USA, pp.14-23, August 2006.

• (PAPER) "The Threshold Join Algorithm for Top-k Queries in
Distributed Sensor Networks", D. Zeinalipour-Yazti, Z. Vagena, D.
Gunopulos, V. Kalogeraki, V. Tsotras, M. Vlachos, N. Koudas, D.
Srivastava , In DMSN (VLDB'05), Trondheim, Norway, ACM Series;
Vol. 96, Pages: 61-66, 2005.

• (PAPER) “Efficient top-K query calculation in distributed
networks”, P. Cao, Z. Wang, In PODC, St. John's, Newfoundland,
Canada, pp. 206 – 215, 2004.

• (PAPER) “Indexing Multi-Dimensional Time-Series with Support
for Multiple Distance Measures”, Vlachos, M., Hadjieleftheriou,
M., Gunopulos, D. & Keogh. E. (2003). In the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
August, 2003. Washington, DC, USA. pp 216-225.

• (PAPER) Using Dynamic Time Warping to Find Patterns in Time
Series. Donald J. Berndt, James Clifford, In KDD Workshop 1994.

• (PAPER) Finding Similar Time Series. G. Das, D. Gunopulos and
H. Mannila. In Principles of Data Mining and Knowledge Discovery
in Databases (PKDD) 97, Trondheim, Norway.

64

Bibliography
• (TUTORIAL) "Hands-On Time Series Analysis with

Matlab", Michalis Vlachos and Spiros Papadimitriou,
International Conference of Data-Mining (ICDM), Hong-
Kong, 2006

• (TUTORIAL) "Time Series Similarity Measures", D.
Gunopulos, G. Das, Tutorial in SIGMOD 2001.

• Other Tutorials by Eamonn Keogh
http://www.cs.ucr.edu/~eamonn/tutorials.html

• (BOOKS) Jiawei Han and Micheline Kamber
Data Mining: Concepts and Techniques, 2nd ed.
The Morgan Kaufmann Series in Data Management
Systems, Jim Gray, Series Editor Morgan Kaufmann
Publishers, March 2006. ISBN 1-55860-901-6

Distributed Spatio-Temporal
Similarity Search

Thanks!

This presentation is available at the following URL:
http://www.cs.ucy.ac.cy/~dzeina/talks.html

Related Publications available at:
http://www.cs.ucy.ac.cy/~dzeina/publications.html

Questions?

