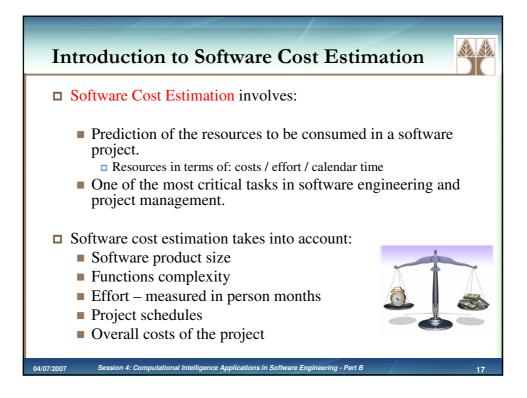
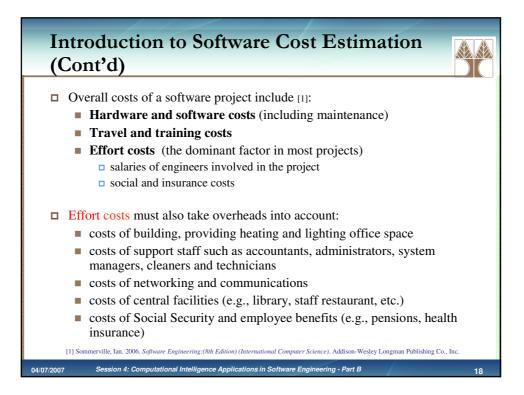
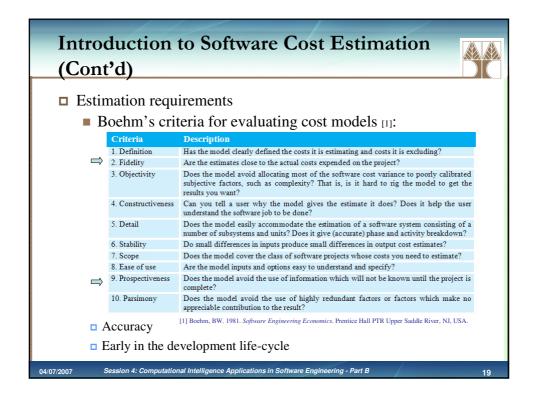
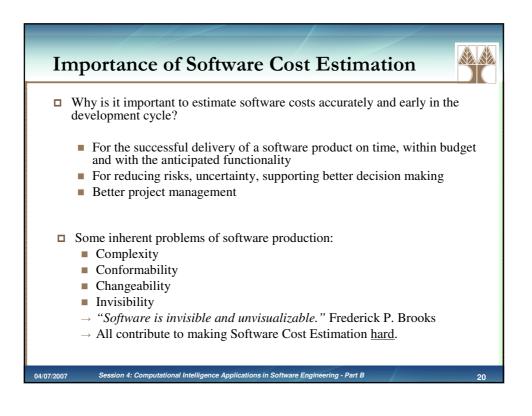


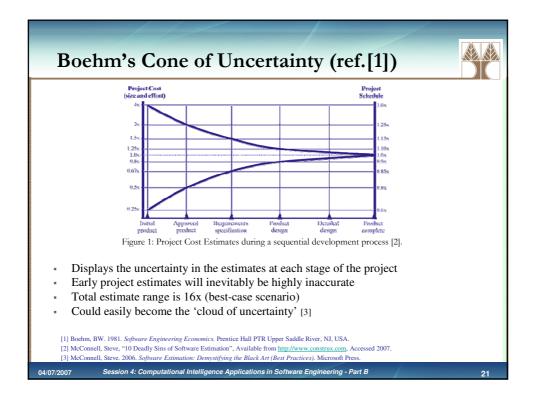
Computational Intelligence (Cont'd)
 Neural Networks Fuzzy Logic Evolutionary Algorithms Genetic Algorithms Genetic Programming Evolutionary Programming Evolutionary Strategies Differential Evolution Cultural Evolution, Co-evolution etc. Swarm Intelligence Case Based Reasoning Data Mining Techniques Adaptive Computing Systems Knowledge Based Systems Expert Software Systems Machine Learning Techniques Hybrid Intelligent Systems
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A 10

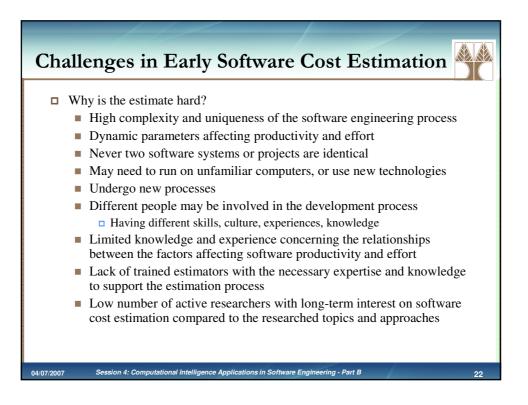


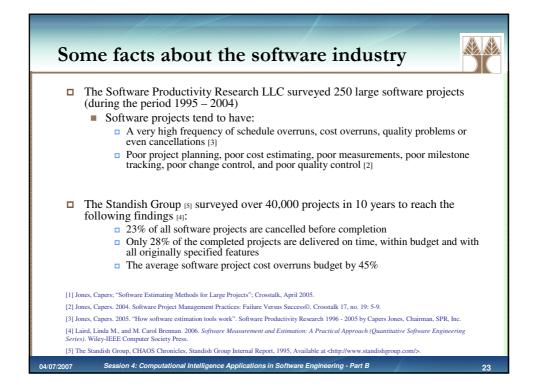


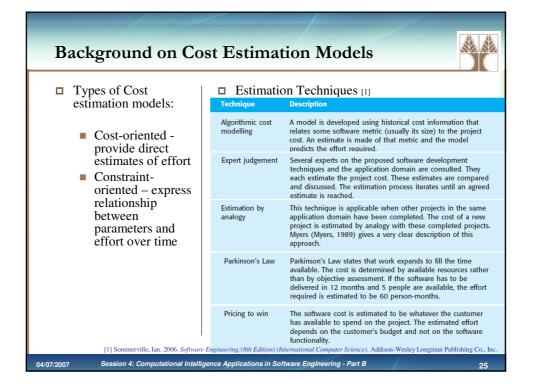


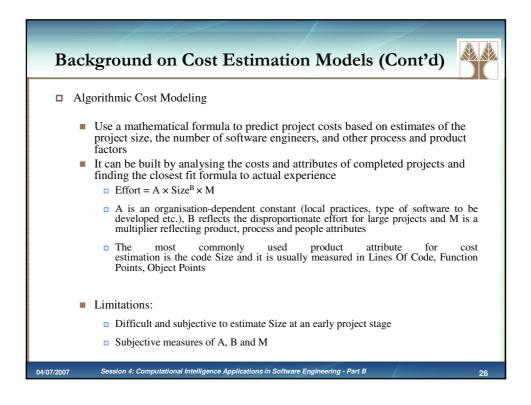


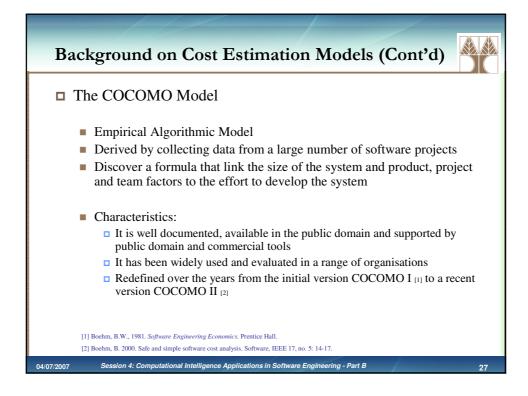


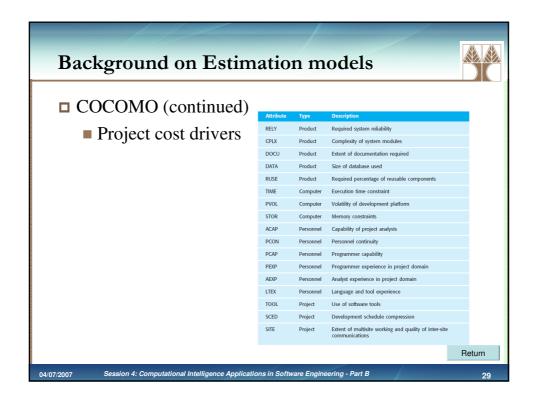


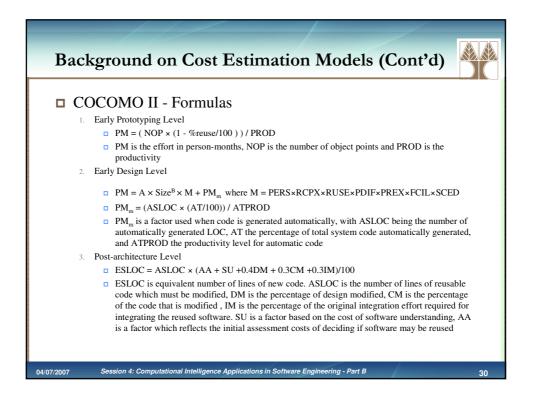


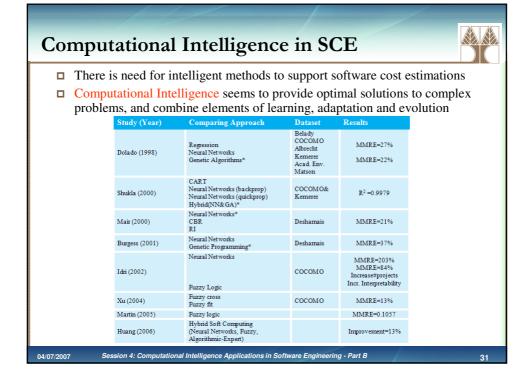


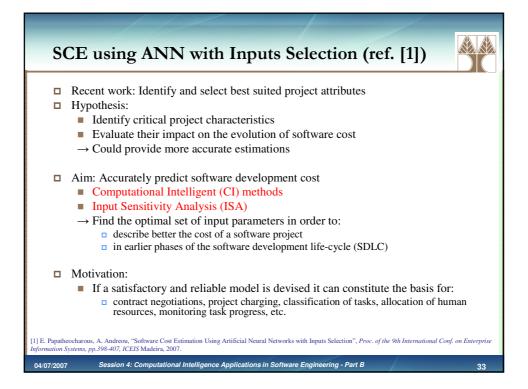


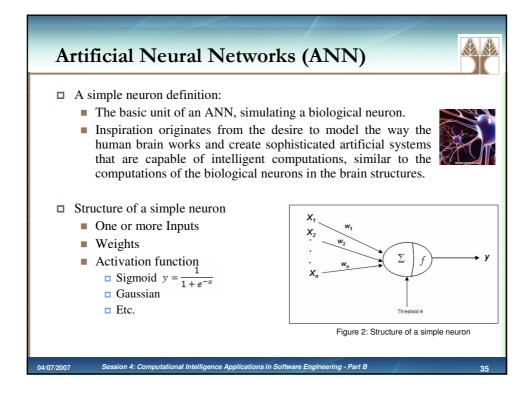


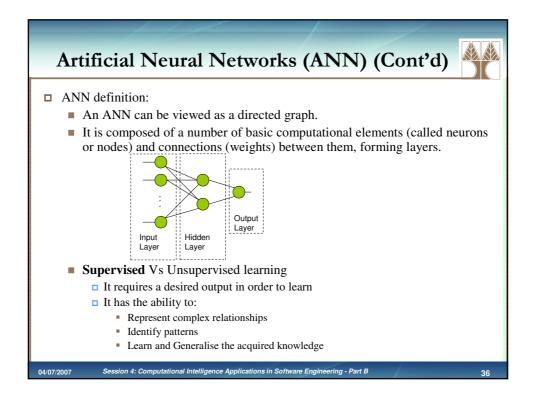

Some	cha	llenges: His	story of IT projects	
□ Sof	ftware	projects often fail [1]		
	YEAR	COMPANY	OUTCOME (COSTS IN US \$)	
	2005	Hudson Bay Co. [Canada]	Problems with inventory system contribute to \$33.3 million* loss.	
	2004-05	UK Inland Revenue	Software errors contribute to \$3.45 billion* tax-credit overpayment.	
	2004	Avis Europe PLC [UK]	Enterprise resource planning (ERP) system canceled after \$54.5 million [†] is spent.	
	2004	Ford Motor Co.	Purchasing system abandoned after deployment costing approximately \$400 million.	
	2004	J Sainsbury PLC [UK]	Supply-chain management system abandoned after deployment costing \$527 million.*	
	2004	Hewlett-Packard Co.	Problems with ERP system contribute to \$160 million loss.	
	2003-04	AT&T Wireless	Customer relations management (CRM) upgrade problems lead to revenue loss of \$100 million.	
	2002	McDonald's Corp.	The Innovate information-purchasing system canceled after \$170 million is spent.	
	2002	Sydney Water Corp. [Australia]	Billing system canceled after \$33.2 million [†] is spent.	
	2002	CIGNA Corp.	Problems with CRM system contribute to \$445 million loss.	
	2001	Nike Inc.	Problems with supply-chain management system contribute to \$100 million loss.	
	2001	Kmart Corp.	Supply-chain management system canceled after \$130 million is spent.	
	2000	Washington, D.C.	City payroll system abandoned after deployment costing \$25 million.	
	SOURCES: 6	I BUSINESS WEEK, CEO MAGAZINE, COMPUTER	RWORLD, INFOWEEK, FORTUNE, THE NEW YORK TIMES, TIME, AND THE WALL STREET	
🗖 Wh	w?		JODANAL	
	2	6.1	C · · · C · 1 · · · 1 ·	
			reasons for project failure is the inaccura	ate
	estima	ate of the needed res	sources.	
	estima	ate software costs	ne importance of having supportive metho ailure]. <i>Spectrum, IEEE</i> 42, no. 9: 42- 49.	ods to
04/07/2007	Session	4: Computational Intelligence Ap	oplications in Software Engineering - Part B	24

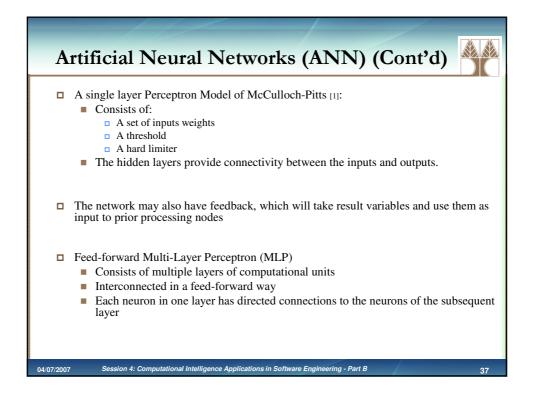


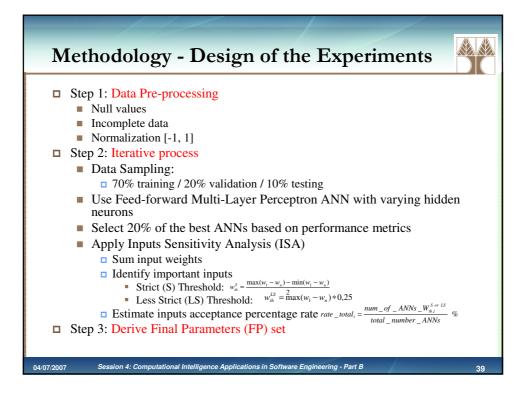


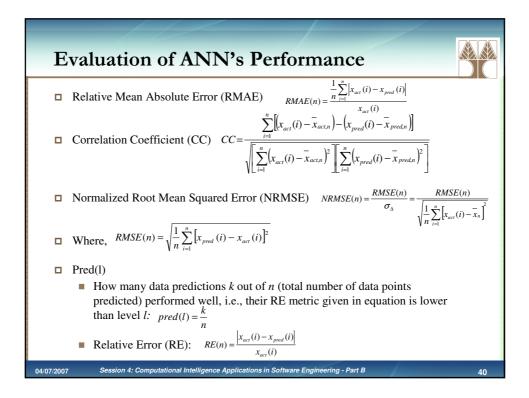

Ba	ackgrou	ind on Cost I	Estimation Models (Cont'd)
	COCOM	IO I	
	Project complexity	Formula	Description
	Simple	$\rm PM = 2.4~(\rm KDSI)^{1.05} \times ~M$	Well-understood applications developed by small teams
	Moderate	$PM=3.0~(KDSI)^{1.12}\timesM$	More complex projects where team members may have limited experience of related systems
	Embedded	$PM=3.6~(KDSI)^{1.20}\timesM$	Complex projects where the software is part of a strongly coupled complex of hardware, software, regulations and operational procedures
			KDSI : Thousands of Delivered Source Instructions
	COCON	II ON	M : Multipliers are created and adjusted according to project cost dri
	1. Early H	Prototyping Level	
		stimates based on Object P equirements+prototyping)	coints and a simple formula is used for effort estimation (draft
	2. Early I	Design Level	
		stimates based on FP that a esign)	are then translated to LOC (full reqs+specs, perhaps some initial
	3. Post-ar	chitecture Level	
	E	stimates based on LOC	
04/07/2007	Session	4: Computational Intelligence A	oplications in Software Engineering - Part B 28

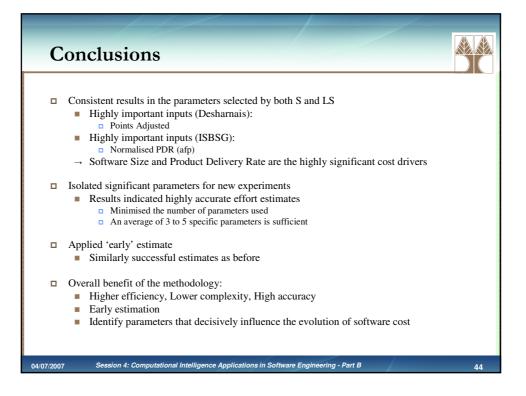


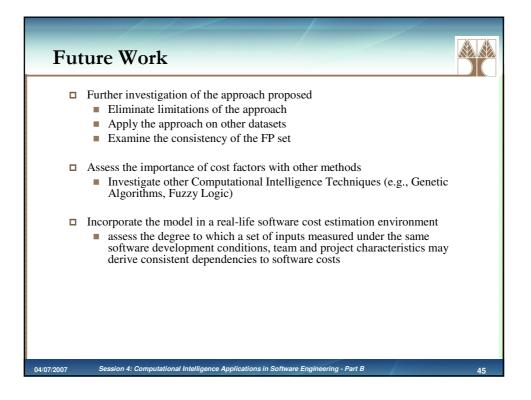


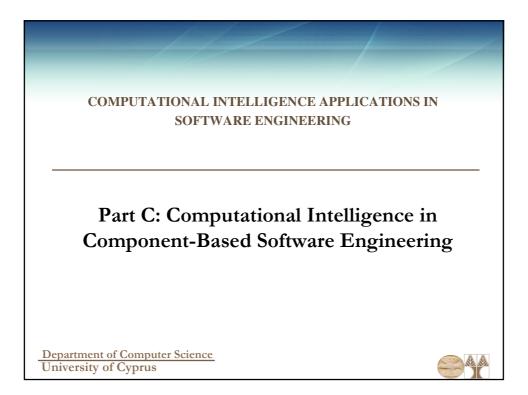

	-1989	1990-1999	2000-2004	Total	Estimation	-1989	1990-1999	2000-2004	Total
Research topic					Rg	21 (51%)	76 (47%)	51 (51%)	148 (49%)
Em	30 (73%)	96 (59%)	58 (58%)	184 (61%)	An	1 (2%)	15 (9%)	15 (15%)	31 (10%)
Pf	8 (20%)	7 (4%)	3 (3%)	18 (6%)	Ej	3 (7%)	22 (13%)	21 (21%)	46 (15%)
Cm	3 (7%)	13 (8%)	4 (4%)	20 (7%)	Wb	3 (7%)	5 (3%)	4 (4%)	12 (4%)
Sm	5 (12%)	39 (24%)	16 (16%)	60 (20%)	Fp	7 (17%)	47 (29%)	14 (14%)	68 (22%)
Oi	9 (22%)	25 (15%)	14 (14%)	48 (16%)	Ct	0 (0%)	5 (3%) 4 (2%)	9 (9%)	14 (5%)
Un	2 (5%)	10 (6%)	13 (13%)	25 (8%)	Nn	2 (5%)	4 (2%)	4 (4%)	22 (7%)
Ep	2 (5%)	8 (5%)	6 (6%)	16 (5%)	Th	20 (49%)	14 (9%)	5 (5%)	39 (13%)
Ds	0 (0%)	1 (1%)	2 (2%)	3 (1%)	By	0 (0%)	1 (1%)	6 (6%)	7 (2%)
Ot	0 (0%)	3 (2%)	1 (1%)	4 (1%)	Cb	0 (0%)	3 (2%)	2 (2%)	5 (2%)
	sments = Un,			zational issues = Oi, mance = Ep, Data set	Wb = Work t trees, Si = Si	reak-down, Fp	Function Point leural network,	-	y, Ej = Expert judgm ion and regression = Bayesian,
here is n	o silve		t s limita		-	**			

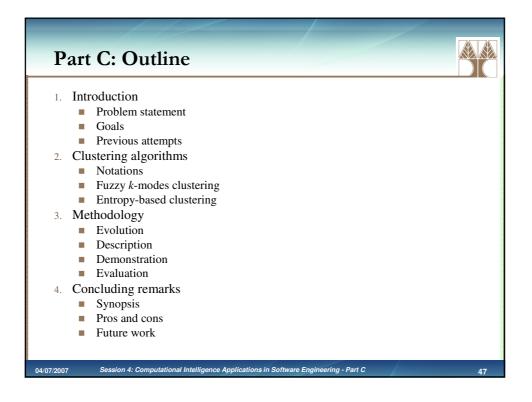

Desharnais (1988)	ISBSG (Release 9)
	· · · · · ·
~80 systems developed by a	 International Software
Canadian software development	Benchmarking Standards Group
house	Broad cross range data (multi-
	organisational, multi-applicatio
	domain, multi-environmental)
Id Table 1. Desharnais Attributes	Id Table 2. ISBSG Attributes
1 Project Name	1 Project Name
2 Team's Experience (Years) 3 Project Manager's Experience	2 Functional Size 3 Adjusted Function Points
3 Project Manager's Experience 4 Length Of Development	4 Unadjusted Function Points
5 Development Effort (Hours)	5 Project Elapsed Time
6 Number Of Transactions	6 Project Inactive Time
7 Number Of Entities	7 Count Approach
8 Unadjusted Function Points	8 Normalised Work Effort
9 Scope	9 Productivity Delivery Rate
10 Adjusted Function Points	
10 Adjusted Function Points	

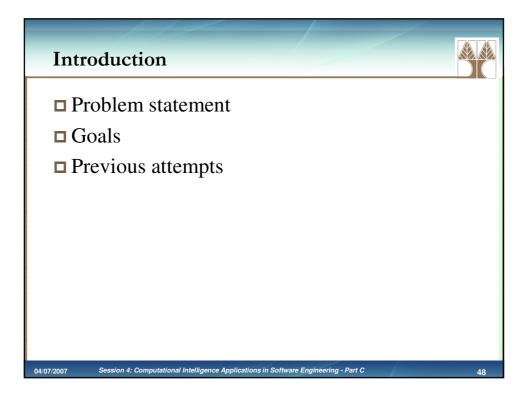


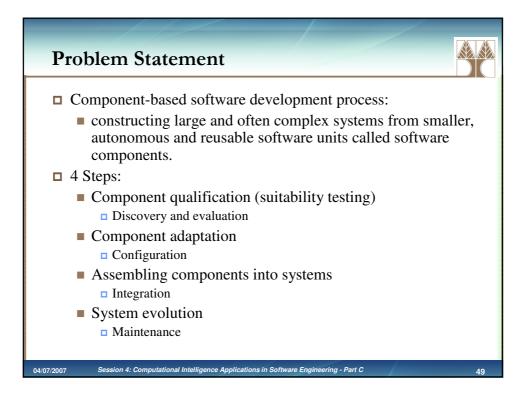


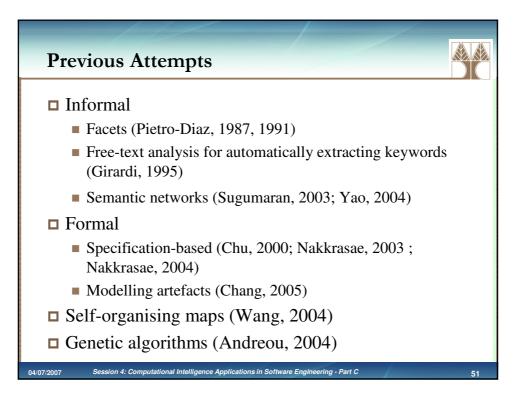


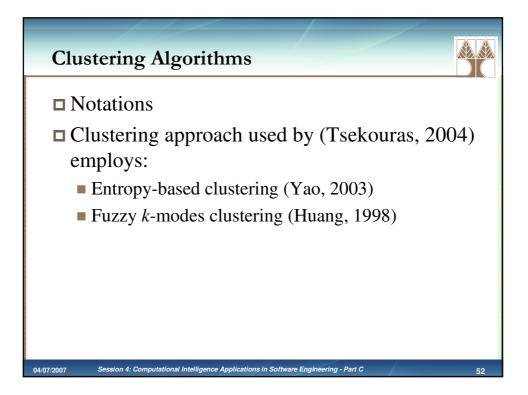


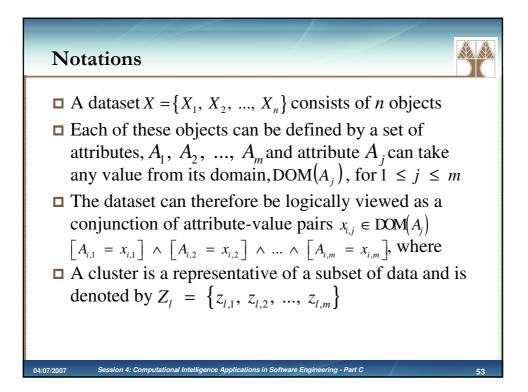

_					P			10		~~								
Exp	oeri	m	er	ntal	K	esi	ılts	15	В	SG	r							
										_								
	BSG					lts (F	Perfor	rman	ice	Erro	rs v	's A	vera	ige '	Wei	ghts	vs	
Th	reshc	old A	Acc	eptar	ice)													
			ANN	Experime	ntal Res	ults / Tra	aining And	l Testing	Error	s (Indica	tive ru	ns – out	of 10 it	erations	5)			
ANN					AINING									STING				
	NRMSE		CC	MSE		MAE	MAE	pred(1		NRMSE		CC	MSE		MAE	MA		pred(1
18-22-1 18-23-1	0.3857		9237 9026	0.0020		0349 0355	0.0294	0.998		0.3761		9381 9509	0.004		.0642	0.04		0.993
18-25-1	0.4934		9020 8727	0.0020		0333	0.029	0.998		0.3587		9309	0.004		0532	0.04		0.993
18-19-1	0.3294		9452	0.001		0300	0.0256	1		0.2616		9675	0.002		.0409	0.03		1
					ANN	Experim	ental Resu	lts / Ave	rage W	eights f	or each	Input						
ANN	Reporte					nalized	Norm	alized	Inn	it count	En	quiry	Int	erface	A	dded	D	eleted
	(afp		(ufp)				pdr		•			ount		ount		ount		count
18-22-1	0.10			0.02 0.086			01		0.05		0.14		016				0.08	
18-23-1	0.09			0.18	0.153			0.13		0.05		0.07		131				0.01
18-35-1 18-19-1	0.04			0.03		185		18		0.08 0.11		0.06		088).11) 15		0.01
10-19-1	0.00						ut Sensitiv									.15		0.22
	Demoste							alized				quiry		erface		dded	D	eleted
ANN	(afr	opred pdr Project pdr Normalized (afp) (ufp) pdr (afp)		pdr	(ufp)	Inpu	it count	C	ount	C	ount	o	ount		count			
	S	LS	S	LS	S	LS	S	LS	S	LS	S	LS	S	LS	S	LS	S	LS
18-22-1 18-23-1			-						-		-		-	~	*		*	1
18-23-1 18-35-1	•	~	· ·	•	•	-	-	•	~	~	-	~	~	~	1	~	-	
18-19-1		-	~	~	~	~	~	~	~	~	· ~	~			· ·	~	~	~
						ISBS	G Datas	et Final	Para	neter S	et Sel	ected						
			1	Strict			Less	Strict			'Ear	·ly'						
				Normalis	ed PD	R (afp)	Nom	nalised	PDR	(afp)	Fund	tional	size					
FP(I	ISBSG	a)=		File coun	t	/	File	ount		/	Adju	isted F	unctio	n Poin	ts			
				Added c	ount		Adde	d count	t			nalised			_			
			H	- Jaca C				iry cou						(m.P)	_			
								ged cou										

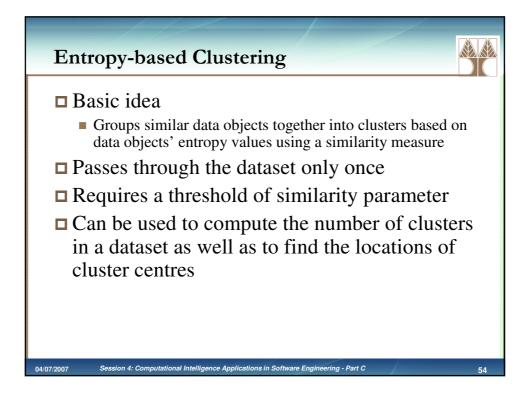

	Desha		et ANN Fina	al Runs			ISB		ANN Final I TING	Runs	
NRMSE	CC	MSE	TING RMAE	MAE	pred(1)	NRMSE	CC	MSE	RMAE	MAE	pred(1)
			Approach		prod(r)				Approach		Pred(*)
0.6916	0.6999	0.0169	0.1956	0.0907	1	0.5246	0.8523	0.0077	0.0374	0.0350	0.9932
0.7172	0.6762	0.0181	0.2089	0.1027	1	0.2195	0.9766	0.0013	0.0260	0.0242	1
0.8602	0.5801	0.0261	0.2431	0.1125	1	0.4290	0.9086	0.0052	0.0418	0.0390	0.9932
0.7202	0.6759	0.0183	0.2026	0.0905	1	0.3564	0.9386	0.0035	0.0390	0.0360	1
			LS) Approac						LS) Approac		
0.6550	0.8330	0.0151	0.1844	0.0806	1	0.3031	0.9565	0.0026	0.0384	0.0355	1
0.6967	0.7719	0.0171	0.1875	0.0767	1	0.5229	0.8617	0.0077	0.0445	0.0418	0.9932
0.6104	0.8410	0.0131	0.1718	0.0826	1	0.5984	0.8055	0.0101	0.0389	0.0360	0.9932
0.6414	0.8040	0.0145	0.1780	0.0781	1	0.6938	0.7178	0.0136	0.0495	0.0457	0.9932
			Phase) Appr						Phase) Appro		
0.8772	0.4852	0.0272	0.2463	0.1108	1	0.2968	0.9559	0.0024	0.0392	0.0363	1
0.7052	0.7405	0.0175	0.2044	0.0932	1	0.2355	0.9731	0.0015	0.0258	0.0239	1
0.7419 0.8390	0.6769	0.0194 0.0248	0.2095 0.2370	0.0945 0.1349	1	0.1962 0.2805	0.9805	0.0010 0.0022	0.0232	0.0218	1
					ve achiev	red low pe				0.0251	
	U					ight rise i				s	
			lts durin			-					
	2			0 0				1.00			
□ R	elatively	/ similar	predictiv	e power	of the in	itial and t	ne reduc	ea FP se	t		
. Δ	chieved	to reduc	the nec	essarv n	umber of	attributes	in the e	stimates			

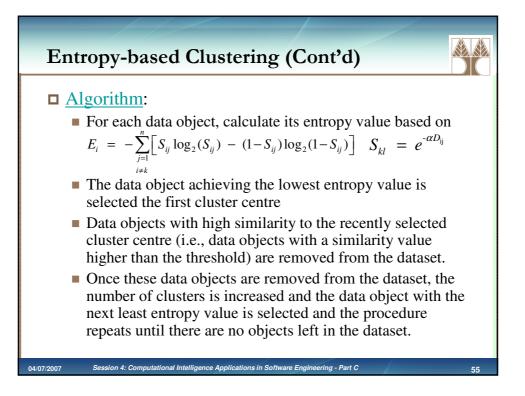


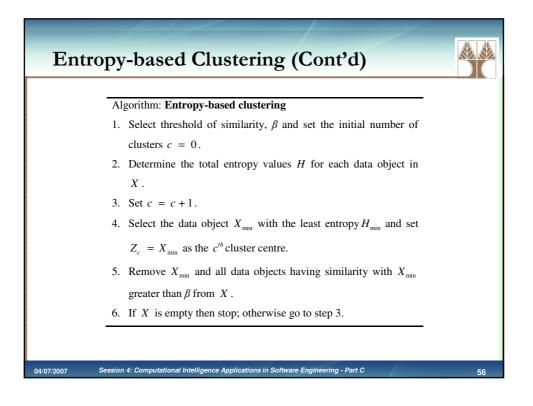


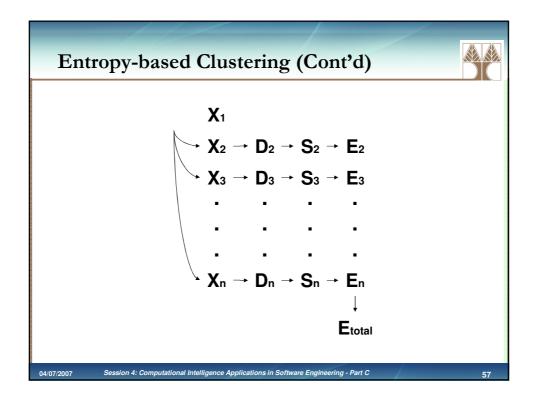


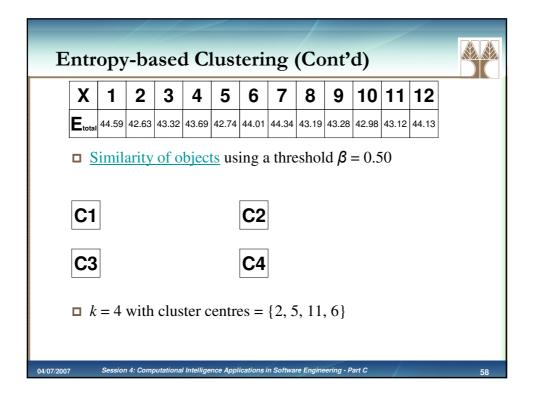


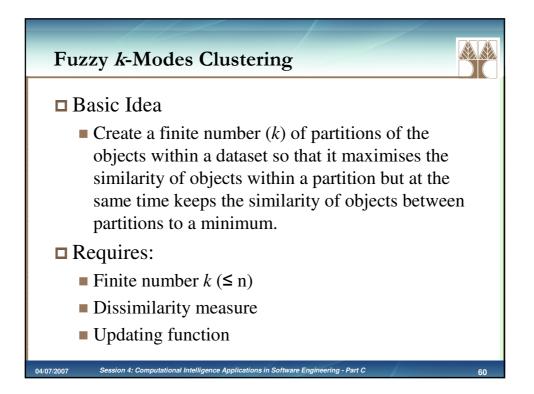


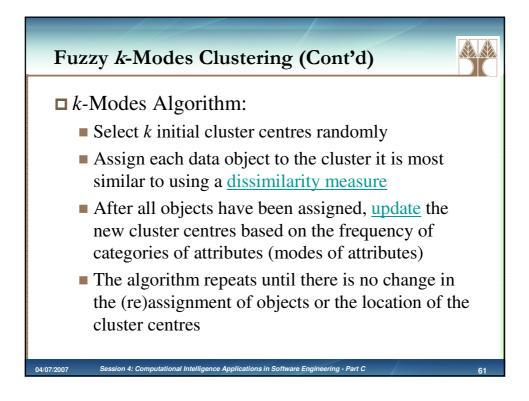

Goals	
□ Aim	
Improve the component-based development process	
□ How?	
Shorten the process' development time	
□ Where?	
■ Component qualification → discovery	
Requirements	
For searching: efficiency	
For retrieving: adequateness	
□ Method?	
Cluster components in the repository into subsets	
Find the nearest subset to the user's search preference	
Retrieve most suitable from in there	
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C	50

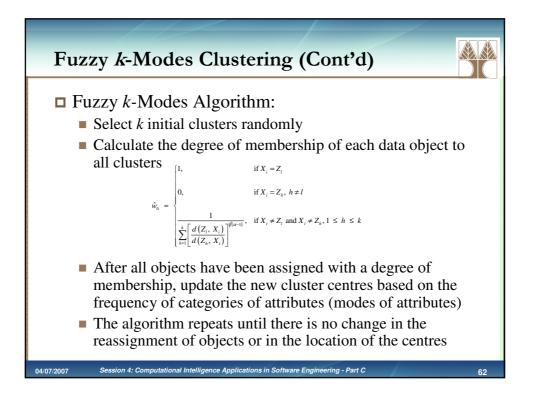


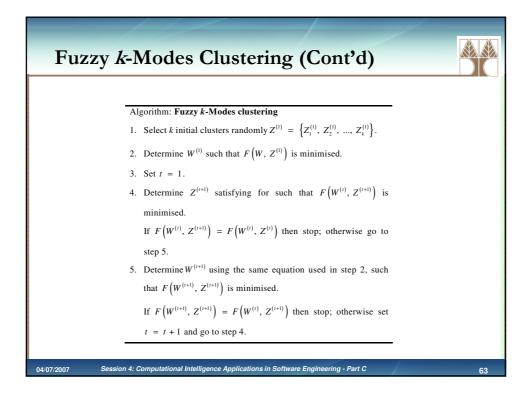




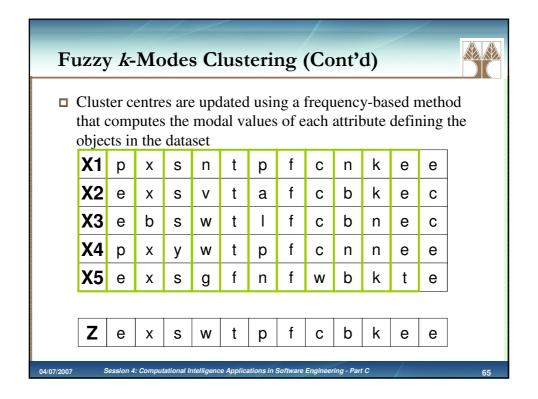


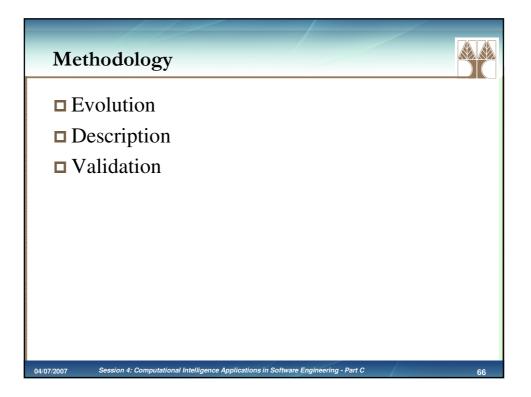


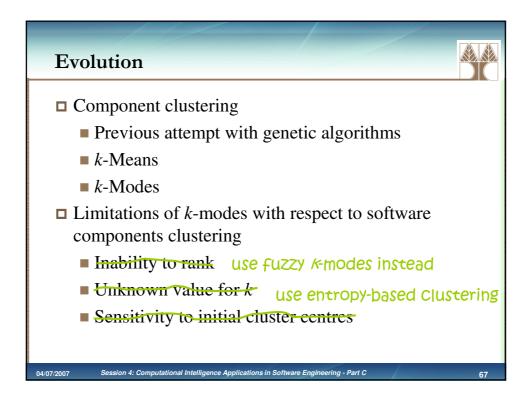


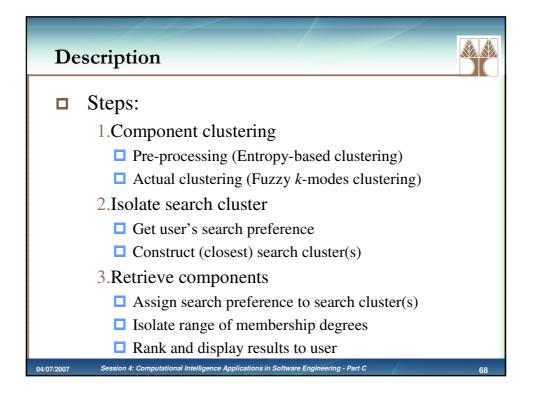


Χ	1	2	3	4	5	6	7	8	9	10	11	12
1	0.00	0.36	0.22	0.38	0.52	0.46	0.68	0.46	0.64	0.43	0.10	0.49
2	0.36	0.00	0.31	0.72	0.38	0.36	0.38	0.72	0.36	0.68	0.33	0.43
3	0.22	0.31	0.00	0.38	0.46	0.46	0.46	0.36	0.41	0.36	0.88	0.46
4	0.38	0.72	0.38	0.00	0.46	0.49	0.36	0.72	0.41	0.64	0.38	0.46
5	0.52	0.38	0.46	0.46	0.00	0.46	0.56	0.38	0.77	0.36	0.26	0.41
6	0.46	0.36	0.46	0.49	0.46	0.00	0.43	0.43	0.20	0.43	0.46	0.68
7	0.68	0.38	0.46	0.36	0.56	0.43	0.00	0.41	0.64	0.36	0.32	0.49
8	0.46	0.72	0.36	0.72	0.38	0.43	0.41	0.00	0.38	0.82	0.38	0.46
9	0.64	0.36	0.41	0.41	0.77	0.20	0.64	0.38	0.00	0.38	0.26	0.41
10	0.43	0.68	0.36	0.64	0.36	0.43	0.36	0.82	0.38	0.00	0.38	0.43
11	0.10	0.33	0.88	0.38	0.26	0.46	0.32	0.38	0.26	0.38	0.00	0.33
12	0.49	0.43	0.46	0.46	0.41	0.68	0.49	0.46	0.41	0.43	0.33	0.00



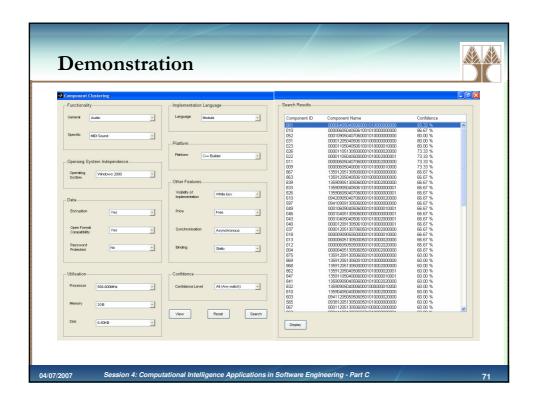


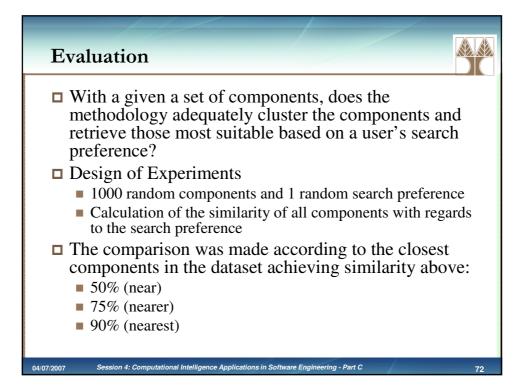


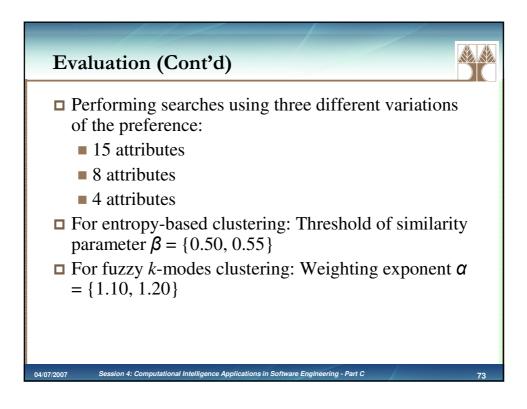


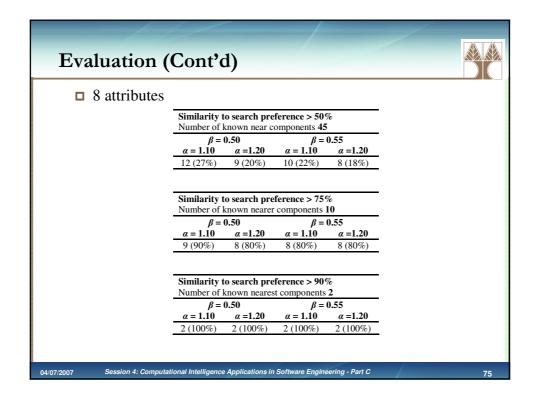

uzzy	y k -	Mo	ode	s C	lust	teri	ng	(C o	ont'	d)		
Dista	ance	betw	veen	an o	bjec	t and	l the	cent	res i	s me	asur	ed by
simp	ly m	atch	ing t	the at	ttribu	utes	of th	e dat	taset	and	stori	ing the
in a j	parti	tion	matr	ix								
d(X	. X	,) ≡	\sum^{m}	δ(x.	. x.	.)		δ(r	r) = {	0, .	$x_{1j} = x_{2j}$ $x_{1j} \neq x_{2j}$
. (1,	2)	$\sum_{j=1}$	(11	J,]]		U (A	$1_j, x_2$;) —	[1, .	$x_{1j} \neq x_{2j}$
X	1	2	3	4	5	6	7	8	9	10	11	12
		2	16	3	13	13	16	4	14	5	16	14
C1	15											
C1 C2	15 6	16	11	13	5	11	6	12	7	14	10	12
C1 C2 C3		16 17	11 5	13 15	5 7	11 11	6 11	12 16	7 7	14 15	10 4	12 13

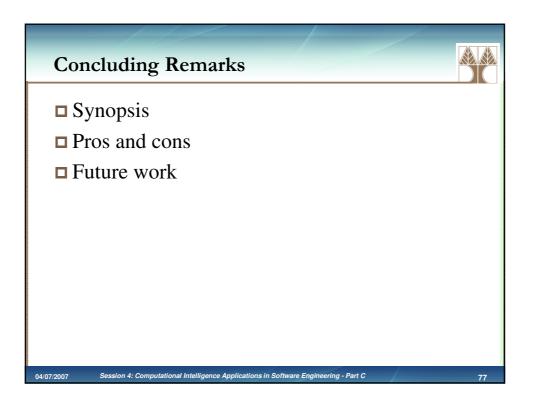


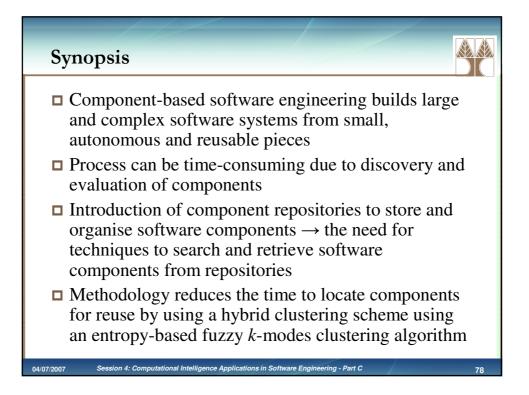


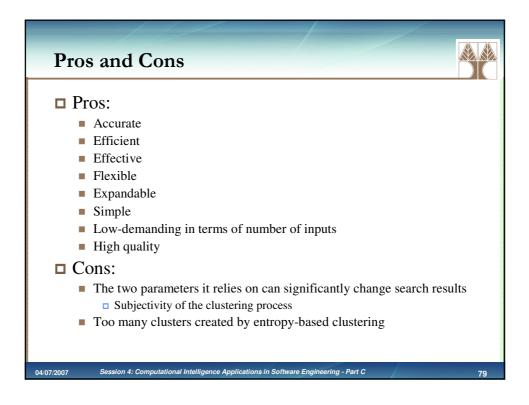


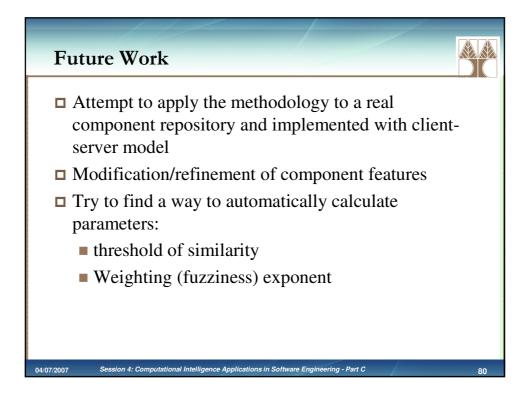


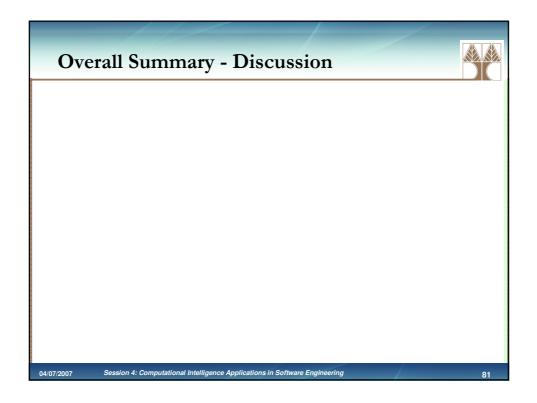







15 attribut	es				
			eference > 50 components 1'		
		0.50		0.55	
	$\alpha = 1.10$	α =1.20	$\alpha = 1.10$	$\alpha = 1.20$	
	13 (76%)	9 (53%)	11 (65%)	8 (47%)	
			eference > 75 r components		
		0.50	1	0.55	
	$\alpha = 1.10$	$\alpha = 1.20$	$\alpha = 1.10$	$\alpha = 1.20$	
	7 (100%)	7 (100%)	7 (100%)	7 (100%)	
			eference > 90 st components		
	,	0.50	,	0.55	
	$\alpha = 1.10$	$\alpha = 1.20$	$\alpha = 1.10$	$\alpha = 1.20$	
	2 (100%)	2 (100%)	2 (100%)	2 (100%)	




Evaluation	(Cont'	d)			
□ 4 attributes					
			eference > 50 components 87		
	β =	0.50	β =	0.55	
	$\alpha = 1.10$	$\alpha = 1.20$	$\alpha = 1.10$	<i>α</i> =1.20	
	15 (17%)	9 (10%)	11 (13%)	8 (9%)	
		known neare	$\frac{\text{eference} > 75}{\rho}$		
	$\alpha = 1.10$	<i>α</i> =1.20	$\alpha = 1.10$	$\alpha = 1.20$	
	9 (39%)	8 (35%)	8 (35%)	7 (30%)	
			eference > 90 st components		
	β =		<i>r</i>	0.55	
	$\alpha = 1.10$	$\alpha = 1.20$	$\alpha = 1.10$	$\alpha = 1.20$	
		6 (86%)	6 (86%)	6 (86%)	

