
1

����������	
�	�
�����	�������
����������	
�	�����

�
������
���	������������	���������
��	
��	�
������	�����������

Presenters:
Andreas S. Andreou
Assistant Professor

Efi Papatheocharous
PhD Candidate

Constantinos Stylianou
PhD Candidate

{aandreou, cstylianou, efi.papatheocharous}@cs.ucy.ac.cy

EUROPEAN THEMATIC NETWORK
for DOCTORAL EDUCATION in COMPUTING

Summer School on Intelligent Systems
Nicosia, Cyprus, July 2-6, 2007

����������	
�	�
�����	�������
����������	
�	�����

����	��	����
����
�	�
	�
������
���	

������������	��	�
������	�����������

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

2

04/07/2007 3Session 4: Computational Intelligence Applications in Software Engineering - Part A

����	��	������

1. Basic Software Engineering Concepts
• Software Development Phases

• Complex Fundamental Problems

2. Computational Intelligence
• Artificial Neural Networks

• Genetic Algorithms

• Fuzzy Logic

3. Software Engineering Intelligence: Areas

04/07/2007 4Session 4: Computational Intelligence Applications in Software Engineering - Part A

Software Engineering:
The process to produce quality software without defects, that is
delivered on time and within budget, meeting clients’ needs and
can be easily maintained

Software Process:
The way we produce software, including

• Life-cycle model
• Human resources
• CASE tools

�����	�
������	�����������	�
������

3

04/07/2007 5Session 4: Computational Intelligence Applications in Software Engineering - Part A

Life-cycle model :

1. Requirements phase

2. Specification phase

3. Design phase

4. Implementation phase

5. Integration phase (parallel with 4)

6. Maintenance phase

7. Retirement

�����	�
������	�����������	�
������	 �
��!�"

Each phase experiences different
fundamental problems

Can CI help here ?

04/07/2007 6Session 4: Computational Intelligence Applications in Software Engineering - Part A

�����	�
������	�����������	�
������	 �
��!�"

Requirements :
� Elicitation of right needs

� Recording of all functions and constraints

� Avoidance of huge and vague documentation, etc…

Specification :
� Vagueness, ambiguity, conflicts

� Not too technical, yet quite formal

� Cost and time estimation

� SPMP (tasks, dependencies, duration, resources), etc…

4

04/07/2007 7Session 4: Computational Intelligence Applications in Software Engineering - Part A

�����	�
������	�����������	�
������	 �
��!�"

Design :
� High-level (architectural) � Logical errors, open architecture

design problems, modularity, coupling, complexity of modules
� Low-level (detailed) � Complexity of data structures and

variables, algorithms selection, flow of control and execution,
cohesion, etc…

Implementation / Integration :
� Configuration management
� Programming philosophy and style
� Programming in the many/large/small
� Integration method
� Testing, etc…

04/07/2007 8Session 4: Computational Intelligence Applications in Software Engineering - Part A

�����	�
������	�����������	�
������	 �
��!�"

Continuous effort to improve the Software Process and Quality:
� SEI guidelines

� CMM

� SPICE

� ISO9126

Continuous monitoring &
assessment

Quality
improvement

Risk
analysis

Process
improvement

PRODUCE PRODUCE
QUALITY QUALITY

SOFTWARE, SOFTWARE,
WITHIN TIME WITHIN TIME
AND BUDGETAND BUDGET

TARGETTARGET

5

04/07/2007 9Session 4: Computational Intelligence Applications in Software Engineering - Part A

�
������
���	������������

Definitions :
Conference: Computational Intelligence - Methods & Applications
- CIMA2005
Defining "Computational Intelligence" is not straightforward. It is
difficult, if not impossible, to accommodate in a formal definition
disparate areas with their own established individualities such as fuzzy
sets, neural networks, evolutionary computation, machine learning,
Bayesian reasoning, etc.

Book: “Computational Intelligence: An Introduction”, Andries P.
Engelbrecht, Wiley 2002
Computational intelligence is the study of adaptive mechanisms to
enable or facilitate intelligent behavior in complex and changing
environments. As such, computational intelligence combines artificial
neural networks, evolutionary computing, swarm intelligence and
fuzzy systems.

04/07/2007 10Session 4: Computational Intelligence Applications in Software Engineering - Part A

� Neural Networks
� Fuzzy Logic
� Evolutionary Algorithms

� Genetic Algorithms
� Genetic Programming
� Evolutionary Programming
� Evolutionary Strategies
� Differential Evolution
� Cultural Evolution, Co-evolution etc.

� Swarm Intelligence
� Case Based Reasoning
� Data Mining Techniques
� Adaptive Computing Systems
� Knowledge Based Systems
� Expert Software Systems
� Machine Learning Techniques
� Hybrid Intelligent Systems

�
������
���	������������	 �
��!�"

6

04/07/2007 11Session 4: Computational Intelligence Applications in Software Engineering - Part A

�
������
���	������������	 �
��!�"

Artificial Neural Networks (ANNs) :

� Offer a powerful, distributed computing architecture that is able

to learn

� Organized in layers of connected and interacting computing

elements called neurons (mimic brain)

� Represent highly nonlinear, complex, multivariate relationships

that are learned from experimental data

� Supervised and unsupervised learning

� Instruments for performing prediction or classification tasks

(e.g. Minsky & Pappert, 1969; Rumelhart & McClelland, 1986; Haykin, 1994)

04/07/2007 12Session 4: Computational Intelligence Applications in Software Engineering - Part A

Evolutionary computing (Genetic Algorithms - GAs) :

�
������
���	������������	 �
��!�"

� Constitute a class of optimization algorithms

� A Genetic Algorithm (GA) provides a search procedure,

which optimizes an objective function

� The GA maintains and evolves a population of candidate

solutions through crossover and mutation operations to

generate new and better, more fit individuals.

� Evolution is a stochastic process – It is based on randomness

(e.g. Fogel et al. 1966; Holland, 1975; Koza, 1990-2004)

7

04/07/2007 13Session 4: Computational Intelligence Applications in Software Engineering - Part A

Fuzzy Logic :

�
������
���	������������	 �
��!�"

(e.g. Zadeh, 1965, 1973…)

� In real world, information is often ambiguous or imprecise.
� An organized method for dealing with imprecise data is called fuzzy

logic
� The data are considered as fuzzy sets. Traditional sets include or do not

include an individual element; there is no other case than true or false.
Fuzzy sets allow partial membership

� Fuzzy Logic is basically a multi-valued logic � allows intermediate
values to be defined between conventional evaluations like yes/no,
true/false, black/white, etc.

� Notions like rather warm or pretty cold can be formulated
mathematically and processed with the computer

04/07/2007 14Session 4: Computational Intelligence Applications in Software Engineering - Part A

�
������	�����������	�������������	�����	

1. Software Cost Estimation
2. Component-Based Software Development
3. Software Testing
4. Software Failure Modeling
5. Software Project Management
6. Software Risk Analysis & Modeling
7. Software Quality Modeling & Assessment
8. Software Reliability Modeling & Forecasting

… and more

Research in :

Studying the needs and tackling SE problems via
Computational Intelligent approaches

8

����������	
�	�
�����	�������
����������	
�	�����

����	��	�
������
���	������������	��	

�
������	�
��	��������
�	

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

04/07/2007 16Session 4: Computational Intelligence Applications in Software Engineering - Part B

����	��	������

1. Introduction to Software Cost Estimation (SCE)
� Problem context and need
� Significance and challenges

2. Literature Review on Software Cost Estimation models
3. Computational Intelligence (CI) in SCE

� Related research carried out at the department

� Qualitatively
� Use of Fuzzy Cognitive

Maps (FCM) in SCE
� Cost factors are

represented as concepts in
the map

� Output: Higher or lower
than original estimation

� Quantitatively
� SCE using ANN with Inputs Selection

� Hypothesis / Aim / Motivation
� Description of the Datasets
� Methodology - Design of the Experiments
� Experimental Results
� Conclusions
� Future Work

9

04/07/2007 17Session 4: Computational Intelligence Applications in Software Engineering - Part B

����
����
�	�
	�
������	�
��	��������
�

� Software Cost Estimation involves:

� Prediction of the resources to be consumed in a software
project.

� Resources in terms of: costs / effort / calendar time
� One of the most critical tasks in software engineering and

project management.

� Software cost estimation takes into account:
� Software product size
� Functions complexity
� Effort – measured in person months
� Project schedules
� Overall costs of the project

04/07/2007 18Session 4: Computational Intelligence Applications in Software Engineering - Part B

����
����
�	�
	�
������	�
��	��������
�
 �
��!�"

� Overall costs of a software project include [1]:
� Hardware and software costs (including maintenance)
� Travel and training costs
� Effort costs (the dominant factor in most projects)

� salaries of engineers involved in the project
� social and insurance costs

� Effort costs must also take overheads into account:
� costs of building, providing heating and lighting office space
� costs of support staff such as accountants, administrators, system

managers, cleaners and technicians
� costs of networking and communications
� costs of central facilities (e.g., library, staff restaurant, etc.)
� costs of Social Security and employee benefits (e.g., pensions, health

insurance)
[1] Sommerville, Ian. 2006. Software Engineering:(8th Edition) (International Computer Science). Addison-Wesley Longman Publishing Co., Inc.

10

04/07/2007 19Session 4: Computational Intelligence Applications in Software Engineering - Part B

����
����
�	�
	�
������	�
��	��������
�	

 �
��!�"

� Estimation requirements
� Boehm’s criteria for evaluating cost models [1]:

� Accuracy
� Early in the development life-cycle

[1] Boehm, BW. 1981. Software Engineering Economics. Prentice Hall PTR Upper Saddle River, NJ, USA.

04/07/2007 20Session 4: Computational Intelligence Applications in Software Engineering - Part B

���
������	
�	�
������	�
��	��������
�

� Why is it important to estimate software costs accurately and early in the
development cycle?

� For the successful delivery of a software product on time, within budget
and with the anticipated functionality

� For reducing risks, uncertainty, supporting better decision making
� Better project management

� Some inherent problems of software production:
� Complexity
� Conformability
� Changeability
� Invisibility
� “Software is invisible and unvisualizable.” Frederick P. Brooks
� All contribute to making Software Cost Estimation hard.

11

04/07/2007 21Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
�#�!�	�
��	
�	�����������	 ���$%&'"

� Displays the uncertainty in the estimates at each stage of the project
� Early project estimates will inevitably be highly inaccurate
� Total estimate range is 16x (best-case scenario)
� Could easily become the ‘cloud of uncertainty’ [3]

��������	�
�� �����������

[1] Boehm, BW. 1981. Software Engineering Economics. Prentice Hall PTR Upper Saddle River, NJ, USA.
[2] McConnell, Steve, “10 Deadly Sins of Software Estimation”, Available from http://www.construx.com, Accessed 2007.
[3] McConnell, Steve. 2006. Software Estimation: Demystifying the Black Art (Best Practices). Microsoft Press.

04/07/2007 22Session 4: Computational Intelligence Applications in Software Engineering - Part B

�#��������	��	�����	�
������	�
��	��������
�

� Why is the estimate hard?
� High complexity and uniqueness of the software engineering process
� Dynamic parameters affecting productivity and effort
� Never two software systems or projects are identical
� May need to run on unfamiliar computers, or use new technologies
� Undergo new processes
� Different people may be involved in the development process

� Having different skills, culture, experiences, knowledge
� Limited knowledge and experience concerning the relationships

between the factors affecting software productivity and effort
� Lack of trained estimators with the necessary expertise and knowledge

to support the estimation process
� Low number of active researchers with long-term interest on software

cost estimation compared to the researched topics and approaches

12

04/07/2007 23Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
��	�����	�(
�	�#�	�
������	�������

� The Software Productivity Research LLC surveyed 250 large software projects
(during the period 1995 – 2004)
� Software projects tend to have:

� A very high frequency of schedule overruns, cost overruns, quality problems or
even cancellations [3]

� Poor project planning, poor cost estimating, poor measurements, poor milestone
tracking, poor change control, and poor quality control [2]

� The Standish Group [5] surveyed over 40,000 projects in 10 years to reach the
following findings [4]:

� 23% of all software projects are cancelled before completion
� Only 28% of the completed projects are delivered on time, within budget and with

all originally specified features
� The average software project cost overruns budget by 45%

[1] Jones, Capers; “Software Estimating Methods for Large Projects”; Crosstalk, April 2005.

[2] Jones, Capers. 2004. Software Project Management Practices: Failure Versus Success©. Crosstalk 17, no. 19: 5-9.

[3] Jones, Capers. 2005. “How software estimation tools work”. Software Productivity Research 1996 - 2005 by Capers Jones, Chairman, SPR, Inc.

[4] Laird, Linda M., and M. Carol Brennan. 2006. Software Measurement and Estimation: A Practical Approach (Quantitative Software Engineering
Series). Wiley-IEEE Computer Society Press.

[5] The Standish Group, CHAOS Chronicles, Standish Group Internal Report, 1995, Available at <http://www.standishgroup.com/>.

04/07/2007 24Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
��	�#���������)���
��	
�	�*	��
+����

� Software projects often fail [1].

� Why?
� One of the most common reasons for project failure is the inaccurate

estimate of the needed resources.
� Project managers stress the importance of having supportive methods to

estimate software costs
[1] Charette, R.N. 2005. Why software fails [software failure]. Spectrum, IEEE 42, no. 9: 42- 49.

13

04/07/2007 25Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	�
��	��������
�	-
����

� Types of Cost
estimation models:

� Cost-oriented -
provide direct
estimates of effort

� Constraint-
oriented – express
relationship
between
parameters and
effort over time

� Estimation Techniques [1]

[1] Sommerville, Ian. 2006. Software Engineering:(8th Edition) (International Computer Science). Addison-Wesley Longman Publishing Co., Inc.

04/07/2007 26Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	�
��	��������
�	-
����	 �
��!�"

� Algorithmic Cost Modeling

� Use a mathematical formula to predict project costs based on estimates of the
project size, the number of software engineers, and other process and product
factors

� It can be built by analysing the costs and attributes of completed projects and
finding the closest fit formula to actual experience

� Effort = A × SizeB × M

� A is an organisation-dependent constant (local practices, type of software to be
developed etc.), B reflects the disproportionate effort for large projects and M is a
multiplier reflecting product, process and people attributes

� The most commonly used product attribute for cost
estimation is the code Size and it is usually measured in Lines Of Code, Function
Points, Object Points

� Limitations:

� Difficult and subjective to estimate Size at an early project stage

� Subjective measures of A, B and M

14

04/07/2007 27Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	�
��	��������
�	-
����	 �
��!�"

� The COCOMO Model

� Empirical Algorithmic Model
� Derived by collecting data from a large number of software projects
� Discover a formula that link the size of the system and product, project

and team factors to the effort to develop the system

� Characteristics:
� It is well documented, available in the public domain and supported by

public domain and commercial tools
� It has been widely used and evaluated in a range of organisations
� Redefined over the years from the initial version COCOMO I [1] to a recent

version COCOMO II [2]

[1] Boehm, B.W., 1981. Software Engineering Economics. Prentice Hall.

[2] Boehm, B. 2000. Safe and simple software cost analysis. Software, IEEE 17, no. 5: 14-17.

04/07/2007 28Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	�
��	��������
�	-
����	 �
��!�"

� COCOMO I

� COCOMO II
1. Early Prototyping Level

� Estimates based on Object Points and a simple formula is used for effort estimation (draft
requirements+prototyping)

2. Early Design Level
� Estimates based on FP that are then translated to LOC (full reqs+specs, perhaps some initial

design)
3. Post-architecture Level

� Estimates based on LOC

KDSI : Thousands of Delivered Source Instructions

M : Multipliers are created and adjusted according to project cost drivers

15

04/07/2007 29Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	��������
�	�
����

� COCOMO (continued)
� Project cost drivers

Return

04/07/2007 30Session 4: Computational Intelligence Applications in Software Engineering - Part B

���,��
��	
�	�
��	��������
�	-
����	 �
��!�"

� COCOMO II - Formulas
1. Early Prototyping Level

� PM = (NOP × (1 - %reuse/100)) / PROD
� PM is the effort in person-months, NOP is the number of object points and PROD is the

productivity
2. Early Design Level

� PM = A × SizeB × M + PMm where M = PERS×RCPX×RUSE×PDIF×PREX×FCIL×SCED

� PMm = (ASLOC × (AT/100)) / ATPROD
� PMm is a factor used when code is generated automatically, with ASLOC being the number of

automatically generated LOC, AT the percentage of total system code automatically generated,
and ATPROD the productivity level for automatic code

3. Post-architecture Level
� ESLOC = ASLOC × (AA + SU +0.4DM + 0.3CM +0.3IM)/100
� ESLOC is equivalent number of lines of new code. ASLOC is the number of lines of reusable

code which must be modified, DM is the percentage of design modified, CM is the percentage
of the code that is modified , IM is the percentage of the original integration effort required for
integrating the reused software. SU is a factor based on the cost of software understanding, AA
is a factor which reflects the initial assessment costs of deciding if software may be reused

16

04/07/2007 31Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
������
���	������������	��	���

� There is need for intelligent methods to support software cost estimations
� Computational Intelligence seems to provide optimal solutions to complex

problems, and combine elements of learning, adaptation and evolution

04/07/2007 32Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
������
���	������������	��	���	 �
��!�"

� There is no silver bullet
� Each approach contains limitations

� “Software Estimation has been identified as one of the three great
challenges for half-century-old in computer science.”

[1] Jorgensen, M., and M. Shepperd. 2007. A Systematic Review of Software Development Cost Estimation Studies. Software Engineering, IEEE Transactions on 33, no. 1: 33-53.

� Research Topics and Estimation Approaches [1]

17

04/07/2007 33Session 4: Computational Intelligence Applications in Software Engineering - Part B

���	����	�..	���#	�����	�������
�	 ���$	%&'"

� Recent work: Identify and select best suited project attributes
� Hypothesis:

� Identify critical project characteristics
� Evaluate their impact on the evolution of software cost
� Could provide more accurate estimations

� Aim: Accurately predict software development cost
� Computational Intelligent (CI) methods
� Input Sensitivity Analysis (ISA)
� Find the optimal set of input parameters in order to:

� describe better the cost of a software project
� in earlier phases of the software development life-cycle (SDLC)

� Motivation:
� If a satisfactory and reliable model is devised it can constitute the basis for:

� contract negotiations, project charging, classification of tasks, allocation of human
resources, monitoring task progress, etc.

[1] E. Papatheocharous, A. Andreou, “ Software Cost Estimation Using Artificial Neural Networks with Inputs Selection” , Proc. of the 9th International Conf. on Enterprise
Information Systems, pp.398-407, ICEIS Madeira, 2007.

04/07/2007 34Session 4: Computational Intelligence Applications in Software Engineering - Part B

���������
�	
�	��������

� Desharnais (1988)
� ~80 systems developed by a

Canadian software development
house

� ISBSG (Release 9)
� International Software

Benchmarking Standards Group
� Broad cross range data (multi-

organisational, multi-application
domain, multi-environmental)

18

04/07/2007 35Session 4: Computational Intelligence Applications in Software Engineering - Part B

����������	.����	.���
�,�	 �.."

� A simple neuron definition:
� The basic unit of an ANN, simulating a biological neuron.
� Inspiration originates from the desire to model the way the

human brain works and create sophisticated artificial systems
that are capable of intelligent computations, similar to the
computations of the biological neurons in the brain structures.

� Structure of a simple neuron
� One or more Inputs
� Weights
� Activation function

� Sigmoid
� Gaussian
� Etc.

Figure 2: Structure of a simple neuron

04/07/2007 36Session 4: Computational Intelligence Applications in Software Engineering - Part B

����������	.����	.���
�,�	 �.."	 �
��!�"

Hidden
Layer

Output
Layer

Input
Layer

� ANN definition:
� An ANN can be viewed as a directed graph.
� It is composed of a number of basic computational elements (called neurons

or nodes) and connections (weights) between them, forming layers.

� Supervised Vs Unsupervised learning
� It requires a desired output in order to learn
� It has the ability to:

� Represent complex relationships
� Identify patterns
� Learn and Generalise the acquired knowledge

19

04/07/2007 37Session 4: Computational Intelligence Applications in Software Engineering - Part B

����������	.����	.���
�,�	 �.."	 �
��!�"

� A single layer Perceptron Model of McCulloch-Pitts [1]:
� Consists of:

� A set of inputs weights
� A threshold
� A hard limiter

� The hidden layers provide connectivity between the inputs and outputs.

� The network may also have feedback, which will take result variables and use them as
input to prior processing nodes

� Feed-forward Multi-Layer Perceptron (MLP)
� Consists of multiple layers of computational units
� Interconnected in a feed-forward way
� Each neuron in one layer has directed connections to the neurons of the subsequent

layer

04/07/2007 38Session 4: Computational Intelligence Applications in Software Engineering - Part B

� Challenge:
� Find a good algorithm for updating the weights and thresholds in each iteration
� Number of learning epochs
� ANN Structure etc.

����������	.����	.���
�,�	 �.."	 �
��!�"

� Software models assessing cost or effort use:
� Feed-forward MLP form of ANN, supervised learning methods and back-

propagation training algorithm.

Hidden
Layer

Output
Layer

Input
Layer

Input
Data

20

04/07/2007 39Session 4: Computational Intelligence Applications in Software Engineering - Part B

-��#
�
�
��	/ ������	
�	�#�	�0���������

� Step 1: Data Pre-processing
� Null values
� Incomplete data
� Normalization [-1, 1]

� Step 2: Iterative process
� Data Sampling:

� 70% training / 20% validation / 10% testing
� Use Feed-forward Multi-Layer Perceptron ANN with varying hidden

neurons
� Select 20% of the best ANNs based on performance metrics
� Apply Inputs Sensitivity Analysis (ISA)

� Sum input weights
� Identify important inputs

� Strict (S) Threshold:
� Less Strict (LS) Threshold:

� Estimate inputs acceptance percentage rate
� Step 3: Derive Final Parameters (FP) set

25,0)max(1 ∗−= n
LS
th www

2
)min()max(11 nnS

th

wwww
w

−−−=

%
__

_ ,

ANNsnumbertotal

WANNsofnum
totalrate

LSorS
ith

i =

04/07/2007 40Session 4: Computational Intelligence Applications in Software Engineering - Part B

�������
�	
�	�..!� ����
������

� Relative Mean Absolute Error (RMAE)

� Correlation Coefficient (CC)

� Normalized Root Mean Squared Error (NRMSE)

� Where,

� Pred(l)
� How many data predictions k out of n (total number of data points

predicted) performed well, i.e., their RE metric given in equation is lower
than level l:

� Relative Error (RE):

)(

)()(
1

)(1

ix

ixix
nnRMAE

act

n

i
predact�

=

−
=

() ()[]

() () �
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

=

n

i

npredpred

n

i

nactact

n

i

npredprednactact

xixxix

xixxix
CC

1

2
,

1

2
,

1

,,

)()(

)()(

n
k

lpred =)(

[]�
=

−=
n

i
actpred ixix

n
nRMSE

1

2)()(
1

)(

[]
2

1

)(
1

)()(
)(

�
=

∆
−

==
n

i

nact xix
n

nRMSEnRMSE
nNRMSE

σ

)(

)()(
)(

ix

ixix
nRE

act

predact −
=

21

04/07/2007 41Session 4: Computational Intelligence Applications in Software Engineering - Part B

�0����������	1�����	���#������

� Desharnais Indicative Results (Performance Errors vs Average Weights vs
Threshold Acceptance)

FP(Desharnais)=

04/07/2007 42Session 4: Computational Intelligence Applications in Software Engineering - Part B

�0����������	1�����	����2

� ISBSG Indicative Results (Performance Errors vs Average Weights vs
Threshold Acceptance)

FP(ISBSG)=

22

04/07/2007 43Session 4: Computational Intelligence Applications in Software Engineering - Part B

3����	1��	4 5�������
�	���#	�#�	3�	���

� Reducing the number of attributes we achieved low performance error values
� Results are more than promising – there is slight rise in the performance metrics
� Fairly similar results during testing
� Relatively similar predictive power of the initial and the reduced FP set

� Achieved to reduce the necessary number of attributes in the estimates
� Using attributes that can be measured early can produce accurate cost estimations

04/07/2007 44Session 4: Computational Intelligence Applications in Software Engineering - Part B

�
�����
��

� Consistent results in the parameters selected by both S and LS
� Highly important inputs (Desharnais):

� Points Adjusted
� Highly important inputs (ISBSG):

� Normalised PDR (afp)
� Software Size and Product Delivery Rate are the highly significant cost drivers

� Isolated significant parameters for new experiments
� Results indicated highly accurate effort estimates

� Minimised the number of parameters used
� An average of 3 to 5 specific parameters is sufficient

� Applied ‘early’ estimate
� Similarly successful estimates as before

� Overall benefit of the methodology:
� Higher efficiency, Lower complexity, High accuracy
� Early estimation
� Identify parameters that decisively influence the evolution of software cost

23

04/07/2007 45Session 4: Computational Intelligence Applications in Software Engineering - Part B

3���	6
�,

� Further investigation of the approach proposed
� Eliminate limitations of the approach
� Apply the approach on other datasets
� Examine the consistency of the FP set

� Assess the importance of cost factors with other methods
� Investigate other Computational Intelligence Techniques (e.g., Genetic

Algorithms, Fuzzy Logic)

� Incorporate the model in a real-life software cost estimation environment
� assess the degree to which a set of inputs measured under the same

software development conditions, team and project characteristics may
derive consistent dependencies to software costs

����������	
�	�
�����	�������
����������	
�	�����

����	��	�
������
���	������������	��	

�
��
����/�����	�
������	�����������

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

24

04/07/2007 47Session 4: Computational Intelligence Applications in Software Engineering - Part C

����	��	������

1. Introduction
� Problem statement
� Goals
� Previous attempts

2. Clustering algorithms
� Notations
� Fuzzy k-modes clustering
� Entropy-based clustering

3. Methodology
� Evolution
� Description
� Demonstration
� Evaluation

4. Concluding remarks
� Synopsis
� Pros and cons
� Future work

04/07/2007 48Session 4: Computational Intelligence Applications in Software Engineering - Part C

����
����
�

� Problem statement
� Goals
� Previous attempts

25

04/07/2007 49Session 4: Computational Intelligence Applications in Software Engineering - Part C

��
(���	���������

� Component-based software development process:
� constructing large and often complex systems from smaller,

autonomous and reusable software units called software
components.

� 4 Steps:
� Component qualification (suitability testing)

� Discovery and evaluation

� Component adaptation
� Configuration

� Assembling components into systems
� Integration

� System evolution
� Maintenance

04/07/2007 50Session 4: Computational Intelligence Applications in Software Engineering - Part C

2
���

� Aim
� Improve the component-based development process

� How?
� Shorten the process’ development time

� Where?
� Component qualification � discovery

� Requirements
� For searching: efficiency
� For retrieving: adequateness

� Method?
� Cluster components in the repository into subsets
� Find the nearest subset to the user’ s search preference
� Retrieve most suitable from in there

26

04/07/2007 51Session 4: Computational Intelligence Applications in Software Engineering - Part C

�����
�	��������

� Informal
� Facets (Pietro-Diaz, 1987, 1991)
� Free-text analysis for automatically extracting keywords

(Girardi, 1995)

� Semantic networks (Sugumaran, 2003; Yao, 2004)

� Formal
� Specification-based (Chu, 2000; Nakkrasae, 2003 ;

Nakkrasae, 2004)
� Modelling artefacts (Chang, 2005)

� Self-organising maps (Wang, 2004)
� Genetic algorithms (Andreou, 2004)

04/07/2007 52Session 4: Computational Intelligence Applications in Software Engineering - Part C

���������	���
���#��

� Notations
� Clustering approach used by (Tsekouras, 2004)

employs:
� Entropy-based clustering (Yao, 2003)
� Fuzzy k-modes clustering (Huang, 1998)

27

04/07/2007 53Session 4: Computational Intelligence Applications in Software Engineering - Part C

.
����
��

� A dataset consists of n objects
� Each of these objects can be defined by a set of

attributes, and attribute can take
any value from its domain, , for

� The dataset can therefore be logically viewed as a
conjunction of attribute-value pairs

, where
� A cluster is a representative of a subset of data and is

denoted by

{ }1 2, , ..., nX X X X=

1 2, , ..., mA A A jA
()jADOM 1 j m≤ ≤

,1 ,1 ,2 ,2 , , ... i i i i i m i mA x A x A x� � � � � �= ∧ = ∧ ∧ =� � � � � �

(), DOMi j jx A∈

{ },1 ,2 , , , ..., l l l l mZ z z z=

04/07/2007 54Session 4: Computational Intelligence Applications in Software Engineering - Part C

����
��/(����	���������	

� Basic idea
� Groups similar data objects together into clusters based on

data objects’ entropy values using a similarity measure

� Passes through the dataset only once
� Requires a threshold of similarity parameter
� Can be used to compute the number of clusters

in a dataset as well as to find the locations of
cluster centres

28

04/07/2007 55Session 4: Computational Intelligence Applications in Software Engineering - Part C

� Algorithm:
� For each data object, calculate its entropy value based on

� The data object achieving the lowest entropy value is
selected the first cluster centre

� Data objects with high similarity to the recently selected
cluster centre (i.e., data objects with a similarity value
higher than the threshold) are removed from the dataset.

� Once these data objects are removed from the dataset, the
number of clusters is increased and the data object with the
next least entropy value is selected and the procedure
repeats until there are no objects left in the dataset.

ij- D
klS e α=

����
��/(����	���������	 �
��!�"	

2 2
1

 log () (1) log (1)
n

i ij ij ij ij
j

i k

E S S S S
=
≠

� �= − − − −� ��

04/07/2007 56Session 4: Computational Intelligence Applications in Software Engineering - Part C

����
��/(����	���������	 �
��!�"

Algorithm: Entropy-based clustering

1. Select threshold of similarity, � and set the initial number of

clusters 0=c .

2. Determine the total entropy values H for each data object in

X .

3. Set + 1=c c .

4. Select the data object minX with the least entropy minH and set

min =cZ X as the thc cluster centre.

5. Remove minX and all data objects having similarity with minX

greater than � from X .

6. If X is empty then stop; otherwise go to step 3.

Figure 3.1: Entropy-based clustering algorithm

29

04/07/2007 57Session 4: Computational Intelligence Applications in Software Engineering - Part C

X3

X2 S2 E2D2

S3 E3D3

Xn Sn EnDn

.

.

.

.

.

.

.

.

.

.

.

.

Etotal

X1

����
��/(����	���������	 �
��!�"	

04/07/2007 58Session 4: Computational Intelligence Applications in Software Engineering - Part C

43.32 43.1244.59 42.74 44.01 44.34 43.19 43.28 42.9842.63 43.69 44.13H

����
��/(����	���������	 �
��!�"

� Similarity of objects using a threshold � = 0.50

� k = 4 with cluster centres = {2, 5, 11, 6}

X 3 111 5 6 7 8 9 102 4
Etotal

123 111 5 6 7 8 9 102 4 12

C1 C2

C3 C4

30

04/07/2007 59Session 4: Computational Intelligence Applications in Software Engineering - Part C

0.88 0.000.10 0.26 0.46 0.32 0.38 0.26 0.380.33 0.38 0.33

0.46 0.330.49 0.41 0.68 0.49 0.46 0.41 0.430.43 0.46 0.00

8
7

9
10
11

3
2

4
5
6

1
X

12

0.41 0.260.64 0.77 0.20 0.64 0.38 0.00 0.380.36 0.41 0.41

0.36 0.380.43 0.36 0.43 0.36 0.82 0.38 0.000.68 0.64 0.43

0.46 0.320.68 0.56 0.43 0.00 0.41 0.64 0.360.38 0.36 0.49

0.36 0.380.46 0.38 0.43 0.41 0.00 0.38 0.820.72 0.72 0.46

0.46 0.260.52 0.00 0.46 0.56 0.38 0.77 0.360.38 0.46 0.41

0.46 0.460.46 0.46 0.00 0.43 0.43 0.20 0.430.36 0.49 0.68

0.22 0.100.00 0.52 0.46 0.68 0.46 0.64 0.430.36 0.38 0.49

0.31 0.330.36 0.38 0.36 0.38 0.72 0.36 0.680.00 0.72 0.43

0.00 0.880.22 0.46 0.46 0.46 0.36 0.41 0.360.31 0.38 0.46

0.38 0.380.38 0.46 0.49 0.36 0.72 0.41 0.640.72 0.00 0.46

3 111 5 6 7 8 9 102 4 12
����
��/(����	���������	 �
��!�"

04/07/2007 60Session 4: Computational Intelligence Applications in Software Engineering - Part C

377�	,/-
���	���������

� Basic Idea
� Create a finite number (k) of partitions of the

objects within a dataset so that it maximises the
similarity of objects within a partition but at the
same time keeps the similarity of objects between
partitions to a minimum.

� Requires:
� Finite number k (� n)
� Dissimilarity measure
� Updating function

31

04/07/2007 61Session 4: Computational Intelligence Applications in Software Engineering - Part C

377�	,/-
���	���������	 �
��!�"

� k-Modes Algorithm:
� Select k initial cluster centres randomly
� Assign each data object to the cluster it is most

similar to using a dissimilarity measure
� After all objects have been assigned, update the

new cluster centres based on the frequency of
categories of attributes (modes of attributes)

� The algorithm repeats until there is no change in
the (re)assignment of objects or the location of the
cluster centres

04/07/2007 62Session 4: Computational Intelligence Applications in Software Engineering - Part C

377�	,/-
���	���������	 �
��!�"

� Fuzzy k-Modes Algorithm:
� Select k initial clusters randomly
� Calculate the degree of membership of each data object to

all clusters

� After all objects have been assigned with a degree of
membership, update the new cluster centres based on the
frequency of categories of attributes (modes of attributes)

� The algorithm repeats until there is no change in the
reassignment of objects or in the location of the centres

()
()

()1 1

1

1, if

0, if ,

ˆ
1

, if and , 1
,
,

i l

i h

li

i l i h
k

l i

h h i

X Z

X Z h l

w

X Z X Z h k
d Z X
d Z X

α −

=

=�
	
	
	 = ≠
		=

	

≠ ≠ ≤ ≤	
� �	
� �	

	 � ��
�

32

04/07/2007 63Session 4: Computational Intelligence Applications in Software Engineering - Part C

377� ,/-
���	���������	 �
��!�"

Algorithm: Fuzzy k-Modes clustering

1. Select k initial clusters randomly () () () (){ }1 1 1 1
1 2 , , ..., kZ Z Z Z= .

2. Determine ()1W such that ()()1, F W Z is minimised.

3. Set 1t = .

4. Determine ()1tZ + satisfying for such that () ()()1, t tF W Z + is

minimised.

If () ()() () ()()1, , t t t tF W Z F W Z+ = then stop; otherwise go to

step 5.

5. Determine ()1tW + using the same equation used in step 2, such

that () ()()1 1, t tF W Z+ + is minimised.

If () ()() () ()()1 1 1, , t t t tF W Z F W Z+ + += then stop; otherwise set

 + 1t t= and go to step 4.

Figure 3.3: The k-modes algorithm

04/07/2007 64Session 4: Computational Intelligence Applications in Software Engineering - Part C

C1 0 00 0 0 0 1 0 11 1 0

377�	,/-
���	���������	 �
��!�"

X 3 111 5 6 7 8 9 102 4 12

C2 0 01 1 0 1 0 1 00 0 0

C3 1 10 0 0 0 0 0 00 0 0

C4 0 00 0 1 0 0 0 00 0 1

16 1615 13 13 16 4 14 52 3 14

11 106 5 11 126 7 1416 13 12

5 412 7 11 11 16 7 1517 15 13

10 1011 13 2 14 11 11 1211 11 3

� Distance between an object and the centres is measured by
simply matching the attributes of the dataset and storing them
in a partition matrix

() ()1 2 1 2
1

, ,
m

j j
j

d X X x xδ
=

≡ � () 1 2
1 2

1 2

0,
, =

1,
j j

j j
j j

x x
x x

x x
δ

=�

 ≠�

X

33

04/07/2007 65Session 4: Computational Intelligence Applications in Software Engineering - Part C

X4 0 00 0 0 0 1 0 11 1 0

377�	,/-
���	���������	 �
��!�"

X5 0 01 1 0 1 0 1 00 0 0

Z s ee t p f c b kx w e

y ep t p f c n nx w e

s te f n wf b kx g e

� Cluster centres are updated using a frequency-based method
that computes the modal values of each attribute defining the
objects in the dataset

X2 0 00 0 0 0 1 0 11 1 0

X3 0 01 1 0 1 0 1 00 0 0

s ee t a f c b kx v c

s ee t l cf b nb w c

X1 1 10 0 0 0 0 0 00 0 0s ep t p f c n kx n e

04/07/2007 66Session 4: Computational Intelligence Applications in Software Engineering - Part C

-��#
�
�
��

� Evolution
� Description
� Validation

34

04/07/2007 67Session 4: Computational Intelligence Applications in Software Engineering - Part C

��
���
�

� Component clustering
� Previous attempt with genetic algorithms
� k-Means
� k-Modes

� Limitations of k-modes with respect to software
components clustering
� Inability to rank
� Unknown value for k
� Sensitivity to initial cluster centres

�����������	
 �����������

�����������	����� ����������

04/07/2007 68Session 4: Computational Intelligence Applications in Software Engineering - Part C

���������
�

� Steps:
1.Component clustering

� Pre-processing (Entropy-based clustering)
� Actual clustering (Fuzzy k-modes clustering)

2.Isolate search cluster
� Get user’ s search preference
� Construct (closest) search cluster(s)

3.Retrieve components
� Assign search preference to search cluster(s)
� Isolate range of membership degrees
� Rank and display results to user

35

04/07/2007 69Session 4: Computational Intelligence Applications in Software Engineering - Part C

component
clusters

 Application
User

search preference
level of confidence Component search Component rankingsearch cluster

 Application
Administrator

Entropy-based
clustering

threshold of similarity Fuzzy k-modes
clustering

number of clusters
initial cluster centres

component
repository

final cluster centres
partition matrixfuzziness exponent

Server (Application Administrator) Side

Client (User) Side

-��#
�
�
��	��#���

1 2

3 6

4

5

04/07/2007 70Session 4: Computational Intelligence Applications in Software Engineering - Part C

36

04/07/2007 71Session 4: Computational Intelligence Applications in Software Engineering - Part C

���
�������
�

04/07/2007 72Session 4: Computational Intelligence Applications in Software Engineering - Part C

�������
�

� With a given a set of components, does the
methodology adequately cluster the components and
retrieve those most suitable based on a user’ s search
preference?

� Design of Experiments
� 1000 random components and 1 random search preference
� Calculation of the similarity of all components with regards

to the search preference
� The comparison was made according to the closest

components in the dataset achieving similarity above:
� 50% (near)
� 75% (nearer)
� 90% (nearest)

37

04/07/2007 73Session 4: Computational Intelligence Applications in Software Engineering - Part C

�������
�	 �
��!�"

� Performing searches using three different variations
of the preference:
� 15 attributes
� 8 attributes
� 4 attributes

� For entropy-based clustering: Threshold of similarity
parameter � = {0.50, 0.55}

� For fuzzy k-modes clustering: Weighting exponent �
= {1.10, 1.20}

04/07/2007 74Session 4: Computational Intelligence Applications in Software Engineering - Part C

�������
�	 �
��!�"

Similarity to search preference > 50%
Number of known near components 17

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � = 1.20
13 (76%) 9 (53%) 11 (65%) 8 (47%)

Similarity to search preference > 75%
Number of known nearer components 7

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
7 (100%) 7 (100%) 7 (100%) 7 (100%)

Similarity to search preference > 90%
Number of known nearest components 2

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
2 (100%) 2 (100%) 2 (100%) 2 (100%)

� 15 attributes

38

04/07/2007 75Session 4: Computational Intelligence Applications in Software Engineering - Part C

�������
�	 �
��!�"

� 8 attributes
Similarity to search preference > 50%
Number of known near components 45

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
12 (27%) 9 (20%) 10 (22%) 8 (18%)

Similarity to search preference > 75%
Number of known nearer components 10

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
9 (90%) 8 (80%) 8 (80%) 8 (80%)

Similarity to search preference > 90%
Number of known nearest components 2

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
2 (100%) 2 (100%) 2 (100%) 2 (100%)

04/07/2007 76Session 4: Computational Intelligence Applications in Software Engineering - Part C

�������
�	 �
��!�"

Similarity to search preference > 50%
Number of known near components 87

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
15 (17%) 9 (10%) 11 (13%) 8 (9%)

Similarity to search preference > 75%
Number of known nearer components 23

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
9 (39%) 8 (35%) 8 (35%) 7 (30%)

Similarity to search preference > 90%
Number of known nearest components 7

� = 0.50 � = 0.55
� = 1.10 � =1.20 � = 1.10 � =1.20
7 (100%) 6 (86%) 6 (86%) 6 (86%)

� 4 attributes

39

04/07/2007 77Session 4: Computational Intelligence Applications in Software Engineering - Part C

�
�������	1����,�

� Synopsis
� Pros and cons
� Future work

04/07/2007 78Session 4: Computational Intelligence Applications in Software Engineering - Part C

���
����

� Component-based software engineering builds large
and complex software systems from small,
autonomous and reusable pieces

� Process can be time-consuming due to discovery and
evaluation of components

� Introduction of component repositories to store and
organise software components � the need for
techniques to search and retrieve software
components from repositories

� Methodology reduces the time to locate components
for reuse by using a hybrid clustering scheme using
an entropy-based fuzzy k-modes clustering algorithm

40

04/07/2007 79Session 4: Computational Intelligence Applications in Software Engineering - Part C

��
�	���	�
��

� Pros:
� Accurate
� Efficient
� Effective
� Flexible
� Expandable
� Simple
� Low-demanding in terms of number of inputs
� High quality

� Cons:
� The two parameters it relies on can significantly change search results

� Subjectivity of the clustering process
� Too many clusters created by entropy-based clustering

04/07/2007 80Session 4: Computational Intelligence Applications in Software Engineering - Part C

3���	6
�,

� Attempt to apply the methodology to a real
component repository and implemented with client-
server model

� Modification/refinement of component features
� Try to find a way to automatically calculate

parameters:
� threshold of similarity
� Weighting (fuzziness) exponent

41

04/07/2007 81Session 4: Computational Intelligence Applications in Software Engineering

�������	������	/ �������
�

����������	
�	�
�����	�������
����������	
�	�����

���� �!���"���!��������������

#��������$

