
Memory Array Protection: Check on Read or Check on Write?

Panagiota Nikolaou∗,Yiannakis Sazeides∗, Lorena Ndreu∗, Emre Özer† and Sachin Idgunji†
∗University of Cyprus †ARM

Abstract—This work introduces Check-on-Write: a memory
array error protection approach that enables a trade-off between
a memory array’s fault-coverage and energy. The presented
approach checks for error in a value stored in an array before
it is overwritten rather than, as currently done, when it is read
(check-on-read). This aims at reducing the number and energy
of error code checks. This lazy protection approach can be used
for caches in systems that support failure-atomicity to recover
from corrupted state due to a fault.

The paper proposes and evaluates an adaptive memory
protection scheme that is capable of both check-on-read and
check-on-write and switches between the two protection modes
depending on the energy to be saved and fault coverage require-
ments. Experimental analysis shows that our technique reduces
the average dynamic energy of the L1 instruction cache tag and
data arrays by 18.6% and 17.7% respectively. For the L1 data
cache, this is 17.2% and 2.9%, and the savings are 13.4% for
the L2 tag array. The paper also quantifies the implications of
the proposed scheme on fault-coverage by analyzing the mean-
time-to-failure as a function of the transient failure rate.

I. INTRODUCTION

Technological developments have facilitated the continuous
miniaturization of devices on silicon chips. Unfortunately, the
scaling of other key design parameters has not followed suit
and have elevated power and reliability into prime design
constraints across all computing market segments. The soft-
error rate per bit decreases at a slower rate than device scaling
and consequently the soft error rate per microprocessor has
been increasing [4]. Additionally, fixed power envelopes and
limited supply voltage scaling may necessitate low voltage
operation that exacerbates the probability of parametric and
soft-error failures [19], [4]. Clearly, power and reliability are
increasingly becoming intertwined.

These distressing trends have created an impetus for the
development of cost-effective techniques to address the power
and reliability challenges. This is particularly crucial for pro-
cessor memory arrays, such as caches, that take most of the
real-estate in processors and contain numerous, usually min-
imum sized, vulnerable to faults SRAM cells. Existing tech-
niques used to protect memory arrays in current processors,
such as error-correcting-codes (ECC) [6], and redundancy [11],
can help mitigate the problem but incur considerable area and
energy costs. For instance protecting an array with a 72-64
single-error-correction double-error-detection (SECDED) code
requires 12.5% additional cells. Very importantly, accessing the
code bits and checking for errors increases energy consump-
tion. Table I shows the normalized energy breakdown for a read
hit in three different caches for their respective tag and data
arrays. The energy is divided into three components: reading
the data, reading the code bits and checking for errors using the
ECC logic. Details about the configuration and methodology
used to obtain these results are given in Section VI. The data in
Table I clearly indicate that error protection entails a significant
energy overhead ranging from 11% to 23% depending on the
array.

L1 Dcache L1 Icache L2 Cache
Tag Data Tag Data Tag Data

Data bits 77.1% 88.9% 77.1% 81.9% 77.7% 88%
Code bits 16.9% 11.0% 16.9% 17.9% 17% 11.1%
ECC logic 6% 0.1% 6% 0.2% 5.3% 0.9%

TABLE I. READ HIT ENERGY BREAKDOWN FOR DIFFERENT TYPES OF
ARRAYS

The goal of this paper is to reduce the energy spent for
protecting a memory array from faults with minimal impact
on overall performance and fault-coverage. While such trade-
off may be of little interest for a high-availability processor
unwilling to compromise fault-coverage it may be very desir-
able for power and energy constrained commodity processors.
To this end we introduce Check-on-Write (COW): an error
protection approach that checks a value before it is overwritten.
This is in contrast to the current practice of checking for error
in a value each time is read from an array (check-on-read
or COR). COW saves energy when reading a value by not
discharging the bitlines used for reading the value’s code bits
and by not computing the value’s code and checking for error.
The COW approach can provide energy savings if an array has
more reads than writes so that the energy spent for performing
a read-check on writes is less than the energy consumed for
checking data integrity on reads.

While the energy reductions aimed by COW are significant
(Table I) its applicability to caches appears limited. This is a
consequence of COW’s lazy detection approach that allows
a faulty value to be read and used and, therefore, corrupt
other locations before COW checks the value for error. The
corrupted content remains unrecoverable even if the faulty
value that caused the corruption is detected and corrected by
COW. This is in contrast to a COR scheme that can detect
faults as soon as a value is read and, therefore, prevent the
corruption of other locations.

The paper proposes and analyzes the performance of a
memory protection scheme that aims to provide the same level
of performance and fault-coverage as COR while achieving
most of the energy benefits of COW. This is an adaptive
scheme capable of operating in either COR or COW mode.
It also requires support for failure-atomicity (FAT) and array
scrubbing. The FAT is essential to recover from any state
corruptions caused by COW. FAT is widely used in existing
and proposed platforms and, therefore, there are many opportu-
nities to implement and benefit from the proposed scheme [2],
[1], [7], [16], [5]. Scrubbing is needed to check for errors
in locations read but not written. The experimental analysis
shows the proposed scheme to have a negligible impact on
performance and to provide substantial energy savings in
caches by giving up minimal fault coverage from transient
errors.

II. BACKGROUND

A memory array is typically protected against faults using
data redundancy: include few extra bits per entry that encode
the value stored in each array entry. Some of the most popular978-3-9815370-0-0/DATE13/ c©2013 EDAA



COR Error COW Error FAT COW Error
NER NER, DCE, DME, DUE NER, fDCE,sDCE,

DUE,DME
DCE DCE, DUE, DME, NDE fDCE,sDCE,

DUE,DME,NDE
DUE DUE, DME, NDE DUE,DME,NDE
DME DME, DUE, NDE DME,DUE,NDE
NDE NDE, DUE, DME NDE,DUE,DME

TABLE II. ERROR CLASSIFICATION FROM CACHE SCOPE

coding schemes for memory data are parity and SECDED [6].
When writing an array entry with a value we need to generate
the error code of the value and store it together with the value.
When reading an array entry both the value and the code are
read out and the code of the value is generated and checked
against the code read from the array. This corresponds to the
current approach of array protection where errors are checked
when a value is read. We refer to this approach as Check-on-
Read (COR). We assume henceforth, unless indicated other-
wise, that the code used to protect the values in an array is
an error correction code (ECC) capable of both detection and
correction.

Specifically, on a read access when the two codes are
the same the value is assumed to be fault free otherwise the
codes are different and an error has been detected. Depending
on the code strength and the type of error, the error can be
corrected-detectable-correctable error (DCE) or it can be non-
correctable-detectable-unrecoverable error (DUE). There are
some cases of DCE that actually correspond to miscorrections
or Detected Miscorrectable (DME). These occur when an error
that exceeds the code strength is interpreted as a different
correctable error. In the same vein, due to limited code strength
a value may appear fault-free but in reality includes error. This
case corresponds to a non-detectable error (NDE). If none of
the above occurs then the value is error free or No Error (NER).

The above error classification is done by considering the
behavior at the cache scope. Another useful error classification
considers the implications of errors at the program scope [12].
More specifically, whether the erroneous value does not affect
the program output , it causes a program abnormal failure
or it does not lead to an abnormal termination but affects
program output . In this paper we analyze memory array error
behavior at the scope of the cache. The first column of Table II
summarizes the different categories of errors when using COR
protection.

III. CHECK-ON-WRITE (COW)

In this paper we propose the Check-on-Writes (COW)
approach to reduce the energy overhead required for fault
protection in memory arrays. COW is a memory array error
protection approach that checks for error in a value before it is
overwritten. This is unlike COR that does error checking every
time a value is read. For the rest of the paper we assume that
that when we compare COR and COW they use the same ECC
code to protect values.

COW relies on read-write memory array invariance: each
write to an array location becomes a read-check followed by a
write. We denote the read-check before the write henceforth as
RBW. A RBW is identical to a normal read in COR that reads
the code bits and performs error checking. This invariance
ensures: (i) that COW checks for faults, at least, all values
that COR checks, and (ii) that each value read and checked
by COR one or more times before overwritten it only gets
checked once by COW. The first condition is important for

providing same level of fault-coverage whereas the second can
help reduce the energy if the reads are sufficiently more than
the writes.

We illustrate in Fig. 1 the COW operation assuming an
11-7 SECDED code for an array with 2 entries initially
containing zeros. Each write access is denoted by a Wi[j] with
i representing the write entry and j representing the write value.
Similarly Ri[j] denotes reading from entry i the value j. The
example assumes a single bit-flip occurs in the array entry 1
between a time the location is written and read. The example
shows also when the COR performs the check when the value
is read and the correction it performs. The example shows that
the faulty value checked by COR is checked also by COW but
with a delay. The bit flip in entry 1 is detected and corrected
before the value is overwritten, not when it is read.

COW burns less energy on reads as compared to COR by
not discharging the bitlines that access the code bits and by
not using the ECC logic to compute the code and check for
errors. Thus, no energy is spent in bitlines, sense amps and
the associated multiplexers. However, it burns more energy on
writes than COR since it performs in addition to the write a
normal read that includes the code bits and ECC logic. We
will assume for now that the reads are sufficiently more than
the writes. We will come back to this issue in Section V where
we introduce an adaptive scheme to select between COR and
COW.

COW has the potential to reduce energy, as compared to
COR, but does so at the expense of fault-coverage. This is a
consequence of the lazy approach of COW that checks a value
not when is read but when it is about to be overwritten and
can result in observing different error behavior than COR. For
example, COW can render a fault that is detectable by COR to
non-detectable, or a correctable error by COR to uncorrectable
etc. Fig. 2 illustrates a case where the same word is flipped
two separate times by soft errors at the same bit position and
the strikes happen between two consecutive writes to the word.
A read that occurs between the two faults will detect the first
error when using COR and even correct, assuming at least
single error correction capability. On other hand, COW will
check the value before it is overwritten at which time the error
is undetectable: a DCE by COR became NDE by COW.

The various error observed by COW as a function of
the corresponding COR errors are summarized in the second
column of Table II. When there is no fault between the first
read of value and the time is overwritten the error behavior of
COW is identical to COR. However, if faults occur then the
error behavior can change depending on the number of errors.
For example assuming a Hamming based SECDED code [6],
when there is no error by COR on a read and by the time
the value is overwritten there is: (i) one fault then COW will
observe a DCE, (ii) two faults a DUE, (iii) three faults a DUE
or DME, (iv) four faults a DUE or NDE, etc. Section VII
compares the reliability of COR and COW.

Next we discuss some important COW limitations.

A. Checking Not Overwritten Values

There are several situations that require before execution
proceeds to be sure about the integrity of the cache content
(for example before we finish a program or a context switch).
For such situations COW is proposed to rely on array scrub-
bing [14] to perform RBW for all array locations that their



0�0�0�0�0�0�0�0

0�0�0�0�0�1�0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�1�0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 1 1

0 0 0 0
0 0 0 0

ECC�
GEN

0 0 0 0
0 0 1 1

Data�Array

ECC�Array

W1[5]
W1[2]

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�1�0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 1 1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 1 1

0 0 0 0
0 1 1 1

ECC�
CHECK

0 0 0 0
0 0 1 1

ECC�
CHECK

ECC�
GEN

ECC�
CHECK

1 0 0 1
0 0 1 1

CORRECT

Data�Array

ECC�Array

W1[5] R1[5] R1[5] W0[24] R1[15] W1[2]

ECC�
CHECK ECC�

GEN

ECC�
CHECK

0 0 0 0
0 0 1 1

ECC�
CHECK

1 0 0 1
0 0 1 1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

CORRECT

0�0�0�1�1�0�0�0

0�0�0�0�0�1�0�1

1 0 0 1
0 0 1 1

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�1�0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 1 1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 1 1

0 0 0 0
0 1 1 1

ECC�
CHECK

0 0 0 0
0 0 1 1

ECC�
CHECK

ECC�
GEN

ECC�
CHECK

1 0 0 1
0 0 1 1

CORRECT

Data�Array

ECC�Array

W1[5] R1[5] R1[5] W0[24] R1[15] W1[2]

ECC�
CHECK ECC�

GEN

ECC�
CHECK

0 0 0 0
0 0 1 1

ECC�
CHECK

1 0 0 1
0 0 1 1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

CORRECT

0�0�0�1�1�0�0�0

0�0�0�0�0�1�0�1

1 0 0 1
0 0 1 1

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�0�0�0

0�0�0�0�0�1�0�1

0�0�0�0�0�0�0�0

0�0�0�0�0�1 0�1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 1 1

0 0 0 0
0 0 1 1

ECC�
GEN

1 0 0 1
0 0 1 1

Data�Array

ECC�Array

W1[5] R1[5] R1[5] W0[24] R1[15]

ECC�
CHECK ECC�

GEN

ECC�
CHECK

0 0 0 0
0 0 1 1

ECC�
CHECK

1 0 0 1
0 0 1 1

FAT

0�0�0�0�0�0�0�0

0�0�0�0�0�1 0�1

0�0�0�1�1�0�0�0

0�0�0�0�0�1�0�1

0�0�0�1�1�0�0�0

0�0�0�0�0�1�0�1

0�0�0�1�1�0�0�0

0�0�0�0�0�1 1�1

0 0 0 0
0 1 1 1

W1[2]

t0 t1 t2 t3 t4 t5

CORRECT

R1[15]

0 0 0 0
0 0 1 1

W0[5]

0 0 0 0
0 0 1 1

0�0�0�0�0�1�0�1

0�0�0�0�0�1�0�1

0 0 1 1
0 0 1 1

ECC�
CHECK

ECC�
GEN

�0�0 �0�0�0�0�0

�0�0 �0�0�0�0�0

�0�0 �0�0�0�0�0

0�0 �0�0�1�0�1

0�0�0�0�0�0�0

0�0�0�0�1 1 1

ECC�
GEN

0 0 0 0
0 0 1 1

Data�Array

ECC�Array

W1[5]

CORRECT

R1[7]

0 0 0 0
0 0 1 1

W0[7]

ECC�
CHECK

ECC�
GEN

0 0 0 0
0 0 0 0

ECC�
CHECK

�0 �0�0�0�1�1�1

�0 �0�0�0�1 1 1

1 0 0 1
0 0 1 1

ECC�
CHECK

�0�0�0�0�0�0�0

0�0�0�0�1 1 1

0 0 0 0
0 0 1 1

CORRECT
ECC�

CHECK

�0�0 �0�0�1�1�1

�0�0 �0�0�1�0�1

1 0 0 1
0 0 1 1

W1[5]

�0 �0�0�0�1�0�1

�0 �0�0�0�1�0�1

0 0 1 1
0 0 1 1

a.

FAT

NO�ERROR NO�ERROR ERROR�
DETECTEDNO�ERROR NO�ERROR ERROR�

DETECTED

NO�ERROR NO�ERROR ERROR�
DETECTEDNO�ERROR NO�ERROR ERROR�

DETECTED

NO�ERROR NO�ERROR NO�ERROR

ERROR�
DETECTED

ERROR�
DETECTED

NO�ERROR NO�ERROR ERROR�
DETECTED

Fig. 1. COW Protection Approach
most recent access is a read. If the cost of tracking such
values is an issue or the overhead for checking an entire cache
is low, then one can scrub all values in an array to ensure
that no read value in an array goes unchecked. Besides the
end of the program and context switches, COW can perform
scrubbing at regular intervals to reduce error accumulation.
The overhead of scrubbing depends on its frequency. In the
energy, performance and reliability analysis of the paper we
consider the implications of scrubbing.

B. Read-Check before Write Overheads (RBW)

The RBWs are needed before every write and also when
we perform array scrubbing. These clearly incur an energy
overhead and may also hurt performance as they may delay
a normal access. Our analysis for a single thread processor
shows that RBWs may cause slight degradation due to access
conflicts in L1 D$ but for the other caches, I$ and a lower
level cache, the RBWs have negligible performance impact.

The RBW is performed in certain situations already by
processors so COW does not add in these cases extra overhead.
For example, for data caches protected with error-correction-
code when the access datum is smaller than the ECC granu-
larity [10]. In this case each write is preceded by a read that
can be used as a RBW. Also, writeback caches need to read
a dirty block before inserting a new one, thus the RBW is for
free in these cases. We report on the performance impact of
RBW in the experimental results.

C. Recovery from Corrupted State

The problem of COW’s state corruption is illustrated in
Fig. 1. Lets assumes that the faulty value read from entry
1 is written to entry 0 before entry 1 gets overwritten and
checked. Even when the error in entry 1 is eventually detected
and corrected the corrupted state can not be discarded. This
indicates, in general, that even if COW can detect and correct
all errors (by RBW or scrubbing) it can not recover from the
possible corruption due to the direct or indirect use of faulty
values and, therefore, upon error detection execution should be
aborted. This essentially suggests that COW is mainly useful
for error detection. We discuss subsequently, Section IV, how
platforms that support failure-atomicity can help overcome this
COW limitation.

D. How to deal with Crashes

COW is more vulnerable than COR to user and system
crashes because a faulty value that is detectable and correctable
by COR, with COW can corrupt the state and lead to a
crash before COW gets to check it. We propose to mitigate

0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1

Write Read Write

SDC COW

t0 t1 t2 t4t3

Fig. 2. Error correctable by COR but non-detectable by COW
this by introducing a wrapper for intercepting exceptions
raised by an application. Effectively whenever an exception
is raised this wrapper will need to first to establish whether
the exception is possibly due to COW’s delay detection and if
so to attempt to correct the error, discard corrupted state and
resume execution. The wrapper initiates a scrub of all cache
arrays protected by COW. If only correctable errors are found
then the errors should be corrected and the corrupted state
should be discarded. We discuss in Section IV how failure-
atomicity can be used to remove corrupted state. A complete
discussion on how the wrapper and the exception handling will
interact to assess the system health is an important subject but
beyond the scope of this work.

In the case the scrubbing detects an uncorrectable error
the corrupted state is discarded and what is propagated to the
system is the original exception plus information that indicates
the array(s) that contain uncorrectable error(s). If scrubbing
does not detect an error then the exception is propagated to
the system unmodified.

The proposed wrapper function is similar to a middle layer
proposed for intercepting exceptions when using a symptom
based fault detection in [9].

IV. COW AND FAILURE ATOMICITY (FAT-COW)

The main limitation of the COW is that it can not recover
from corrupted state. In this section we explain how COW
combined with failure-atomicity can overcome this problem.

A. Failure Atomicity (FAT)

Several existing and proposed hardware and software
platforms provide support for failure-atomicity (FAT). FAT
describes the property of having a sequence of operations
to either all or none complete. When there is no completion
the state of the system remains unaffected. This sequence is
usually referred to as atomic.

Examples of such proposals are recovery-blocks and their
variations [13], transactional-memory [7], map-reduce pro-
gramming model [2], thread level speculation [16], and cloud
programming models [1].



Failure in the context of FAT covers a range of unexpected
events that can cause the sequence to abort, such as hardware
failures, mispeculation, concurrency violation etc. When a
failure occurs any changes/corruption by the sequence are
discarded and execution resumes from the beginning of the
sequence. In a FAT system it is possible for a failure to
be detected with delay just before the sequence completes.
Implementing FAT requires either or both hardware and soft-
ware support. Depending on the implementation of FAT, the
expected granularity of the sequences, and the type of failures
detected, the overall overhead for FAT recovery can vary from
few cycles to many cycles.

A basic FAT approach is to restart a program or task from
the beginning when a failure occurs. But this may be undesir-
able for long running jobs or jobs that use many resources. A
very well known and widely used technique for fault-tolerance
that also provides FAT is checkpoint-rollback [5]. Checkpoint-
rollback discards corrupted state and can recover previous
fault-free state. This, typically, comes at a higher overhead
as compared to schemes that only provide FAT.

Overall, there exist several proposals that leverage FAT for
fault-tolerance but, as far as we know, none was aimed to trade-
off between memory arrays energy and fault-coverage. What
we propose next is to leverage FAT to discard corruption when
using COW.

B. FAT-COW

COW can be combined with FAT (FAT-COW) to discard
corrupted state when COW detects a fault. When we are
executing an atomic sequence and COW is used for memory
protection an error can be detected: (i) during the execution
of the sequence before writes, (ii) at the end of the sequence
before it completes when a scrub is performed, and (iii) during
a scrub that is initiated to response to the wrapper intercepting
an exception. In all these cases if an error is detected the
corrupted state is discarded using mechanisms provided by
FAT. If the error is correctable then the value is corrected and
execution resumes from the start of the sequence.

A disadvantage of FAT-COW, as compared to COR, is that
it requires longer time to restart execution in the case of a
correctable error. In contrast, COR can detect and correct error
inline with minimal performance overhead. This performance
overhead of FAT-COW may be acceptable if failures happen
rarely. We analyze later the implications of mean-time to FAT-
COW recovery.

The third column of Table II summarizes the different error
types when using FAT-COW protection scheme as compared
to COR and COW. The errors are identical COW except that
DCE errors are divided into two new categories: fast-DCE
(fDCE) and slow-DCE (sDCE). fDCE occurs when COW
detects a correctable error in the parity bits. Such error can be
corrected inline with no need to recover from corruption since
the value used is correct. The sDCE occurs when COW detects
a correctable error in the data bits and requires discarding
corrupted state. We present a reliability analysis of various
FAT-COW errors, including fDCE and sDCE, in Section VII.

Fig. 1 illustrates the FAT-COW operation by showing that
after COW detected and corrected the fault in entry 1 the FAT
is used to remove the corruption effects in entry 0 and recover
it to its previous content.

For read ease henceforth when we use the term COW we
actually refer to FAT-COW.

V. COMBINED COR-COW SCHEME

A typical computing system operates in two modes: user
and kernel. Applications run in user mode and operating
system code and services in kernel mode. Failures in user
mode can be recovered in the worst case by aborting a job
whereas a failure in kernel mode can lead to system crash.
An undetected fault in kernel mode can be exposed to the
user or communicate erroneous information to other system
entities that can be catastrophic. As argued in [9] kernel
recovery is more difficult and, therefore, to minimize system
crashes/corruption we propose to use COW only during user
mode.

This means that we need to switch between COR and
COW depending on the execution mode. The complexity to
provide both protections is minimal. An array with dual mode
protection uses the same paths to generate and check codes as
an array that checks for errors on reads. What is additionally
needed, is to selectively clock gate on a read the discharging of
code bitlines and of the ECC unit. Clock gating is widely used
in processors and we assume that applying as outlined above
should be straightforward. Also when in COW mode the array
controller needs to introduce reads that check values before
their overwritten. We do not discuss these implementation
issues further.

Another implication of the dual mode operation is that
whenever we enter kernel mode and the user mode is using
COW, scrubbing is needed to ensure the integrity of the archi-
tectural arrays. This overhead is accounted in our evaluation.

A. Adaptive Protection Scheme during User Mode

The benefit from COW depends on the program behavior,
specifically the number of reads vs writes and scrubbing
overhead. We propose to select between the two protection
modes at the granularity of atomic sequences based on their
expected energy savings. The adaptive scheme considers at
the end of each atomic sequence, depending on the number
of different types of accesses, if the COW based scheme has
advantage over COR and selects accordingly the protection
mode to use for the next sequence.

In the experimental evaluation we will compare the benefits
of an adaptive realistic-COW-COR scheme that considers the
access during the most recent sequence to decide the next mode
vs the baseline scheme that always does COR. We will also
evaluate the potential of an adaptive oracle-COW-COR scheme
that knows the number of read and write access for the next
sequence. The adaptive schemes take a decision for which
mode to use according to the number of reads and writes, and
the energy to read, write, ecc-check and perform scrubbing as
follows:

#Reads×Echeck > #Writes× (Eread +Echeck) +Escrub

VI. EXPERIMENTAL FRAMEWORK

We extend the validated, cycle accurate, simulator sim-
alpha [3] to perform measurements using a high performance
out-of-order superscalar processor. The key parameters of the
processor configuration are: 32KB, 8-way, LRU, 64 per block,
1 cycle access L1 instruction cache, 32KB, 8-way, LRU, 64



per block, write-back, 3 cycle access L1 data cache, and
an L2 unified cache 2MB, 16-way, LRU, 64B per block,
12-cycle hit latency, 255 cycles miss latency. A SimPoint-
like tool [15] is used to select the regions to simulate from
all SPEC2000 benchmarks. Each benchmark is run for 100
million instructions after fast forwarding to the representative
regions. All benchmarks are used with their reference input
sets.

To compute the MTTF rates for various types of errors
(Table II), the intrinsic FIT/bit rates and per-bit AVF numbers
are required. Our equations, analysis and inputs are based on
the new approximate analytic model introduced in [17] for
temporal multi-bit analysis. We use the bit-flip probability of
10−25, which is projected by ITRS [18]. In our experiments
we consider the average time between two consecutive reads or
writes (Tavg) depending on the protection mechanism. These
inputs are taken from the sim-alpha simulator for various
benchmarks. The percentage of dirty words in caches and the
expected cache AVF are also derived from simulation. We do
not present the derived equations and model details due to
space limitation.

We evaluate the adaptive scheme COR-COW schemes
assuming atomic sequences that correspond to sequence of user
mode instructions between consecutive system calls, denoted
as syscall-sequences, as well as with sequences of length
10M, 1M and 100K instructions to investigate the trends with
changing length.

We evaluate the potential for COW to reduce the energy
consumed by the tag and data arrays of the L1 data, L1
instruction and the serially accessed L2. For these experiments
we report the performance degradation caused by COW due
to RBW and scrubbing operation. The energy results for
the analysis are obtained using a CMOS 32nm Low Power
cache model based on Artisan Memory Compiler. The code
generation and checking logic that uses a Hsiao SECDED
code [8] is implemented in Verilog, and the energy numbers
for the logic are calculated using Synopsis PrimePower power
modeling tool for the 32nm CMOS Low power (LP) library.

VII. RESULTS

A. Energy Consumption

The first four pair of bars in Fig. 3 present the total
normalized average dynamic energy savings for all the caches
together provided by the realistic and oracle adaptive COR-
COW schemes over COR for various interval lengths. The
minimum and a maximum across all the benchmarks is shown
in this graph as well as the actual average value in the center
of each bar.

The results for the realistic adaptive scheme show that the
average energy can be reduced by 12.3% per syscall sequences,
by 12.2% for 10M, by 12.1% for 1M, and by 11.2% for
100K. The results also reveal that the benefits of the realistic
adaptive scheme are close to the optimal. This suggests that
the read/write ratio of an array remains relatively the same
across program phases. The decrease with shorter interval is
due to the increase overhead due to more frequent scrubbing.

A per benchmark analysis of the results per syscall se-
quence shows that the realistic adaptive schemes can provide
substantial energy savings in all arrays except the L2 data
array (actual data not shown due to space limitations). The

adaptive scheme reduces the average dynamic energy of 32KB
L1 instruction cache by 18.6% in the tag array and by 17.6%
in the data array, of a 32KB L1 data cache 17.3% in the tag
and 3.2% in the data array, and of a 2MB L2 cache only
the tag array by 14.9%. The reason that L2 data does not
have any benefits is that its ratio of reads to writes is low.
We also observe in few cases the realistic scheme for the
data array of the L1 data cache to perform slightly worse
than the oracle. This is due to large changes in the read/write
ratio across consecutive sequences. One other per benchmark
observation is that the benefits for L1 instruction data cache
remain the same for all the benchmarks due to the fact that
the L1 instruction cache accesses are mostly reads.

B. Performance analysis

The last four pairs of bars in Fig. 3 show the relative
average performance of the adaptive COR-COW schemes over
the COR approach for different interval lengths. The results
clearly show that the performance degradation is only notable
for interval length of 100K, up to 2%, but for larger intervals
and for the syscall sequences the performance overhead of
scrub and RBW is negligible, never more than 0.6%.

C. Reliability

We present a transient error reliability analysis for DL1
data cache. The trends for the other caches are similar, so due
to space limitations we do not present them. These results
are with 10−25 bit-flip probability per cycle, however, the
observations remain the same for larger bit-flip probabilities.

Figure 4 shows the MTTF for both COW and COR for the
fDCE, sDCE, SDC and DUE. The categories NDE and DME,
in Table II, are grouped in the category referred to as SDC
because both can potentially result in Silent Data Corruption.

We observe that COR fDCE has smaller MTTF (more
frequent) than COW sDCE. The reason is that COR fDCE
corresponds to single errors that occur in the whole code-
word (word and ECC bits), in contrast with COW sDCE that
represents the MTTF for errors that occur only in the data.
COW fDCE MTTF measures the failures due to errors in
the ECC bits only. The combined sDCE and fDCE MTTF
for COW (not shown) is still slightly larger (more rare) than
the COR fDCE. This occurs because some errors that are
correctable by COR turn, mainly, into DUEs for COW.

Fig. 4 shows that COR DUE is larger than COW DUE by
1 order of magnitude. This supports the reasoning for what
causes longer combined DCE for COW.

SDC MTTFs are also shown. Notice that the MTTF for
the COW approach is 20 orders of magnitude lower. This
reduction is mainly due to two bit flips to the same bit in
the same word. Nonetheless, the value is still extremely large
1024 years. Qualitatively, what we are proposing is to save
energy by converting some DUEs to SDC errors.

Finally, we present an availability analysis for sDCE er-
rors for the different caches. We use the MTTF obtained
for syscall sequences and observe the trends with changing
the mean-time-to repair (MTTR). Availability is given by
MTTF/(MTTF+MTTR). The results indicate that the system
is available more than 99.9% when MTTR is smaller than
0.01 years. For larger MTTR, the L2 arrays are more sensitive
to failures. This indicates that if the MTTFs are in the order of



Fig. 3. Energy and Performance Results

1E+00
1E+04
1E+08
1E+12
1E+16
1E+20
1E+24
1E+28
1E+32
1E+36
1E+40
1E+44

fDCE sDCE DUE SDC

M
TT
F:
 y
ea
rs

Categories of errors

COR COW

Fig. 4. MTTF Rates for COR and COW
what is shown in Fig. 4 the impact of COR-COW to availability
is negligible.

VIII. CONCLUSIONS

This paper proposes Check-on-Write (COW) a new pro-
tection mechanism for cache arrays. COW checks errors on
every write access rather than read access as done in the con-
ventional protection schemes (Check-on-Read (COR)). COW
can be combined with failure-atomicity to avoid corruptions.
An adaptive version of the COW scheme is also proposed
where switching between the COW and COR modes is decided
dynamically depending on the processor execution mode or en-
ergy savings with a scrubbing support needed when switching
from COR-COW to COR.

An experimental analysis is performed to compare the
energy, performance and reliability results of the adaptive
COR-COW scheme to the baseline COR scheme when applied
to cache arrays inside a processor. Our results show that cache
dynamic energy consumption can be reduced considerably
ranging from 3% to 19%. The performance overhead due
to scrubbing and recovery is very minimal (i.e. less than
0.5%). The fault coverage of the adaptive COW scheme is
less robust as compared to COR. However, this comes with
considerable savings in dynamic energy, which is a first-class
design parameter in embedded and mobile computing systems.

IX. ACKNOWLEDGEMENTS

This work is supported by ”EuroCloud, Project No 247779”
of the European Commission 7th RTD Framework Programme
Information and Communication Technologies: Computing

Fig. 5. Availability for sDCE COW scheme
Systems, and by the University of Cyprus. The authors would
like to thank Marios Kleanthous and Quentin Minster for
their help with the paper preparation and also the anonymous
reviewers for their constructive critique and suggestions.

REFERENCES

[1] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin,
“Orleans: Cloud computing for everyone,” in SOCC, 2011.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[3] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: a val-
idated execution driven Alpha 21264 simulator,” CS Dept., University
of Texas at Austin, Tech. Rep. TR-01-23, 2001.

[4] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” Mar. 2011.

[5] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[6] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[7] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” in Proceedings of the 20th annual
international symposium on computer architecture, ser. ISCA ’93, 1993.

[8] M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column SEC-
DED Codes,” IBM Journal of Research and Development, vol. 14, no. 4,
pp. 395–401, 1970.

[9] M. lap Li, P. Ramach, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software
and implications for resilient system design,” in In Proc. Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems(ASPLOS, 2008.

[10] K. M. Lepak and M. H. Lipasti, “Silent stores for free,” in Proceedings
of the 33rd annual ACM/IEEE international symposium on Microarchi-
tecture, ser. MICRO 33, 2000, pp. 22–31.

[11] P. J. Meaney, S. B. Swaney, P. N. Sanda, and L. Spainhower, “IBM
z990 soft error detection and recovery,” IEEE Transactions on Device
and Materials Reliability, vol. 5, no. 3, pp. 419–427, Sep. 2005.

[12] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” in High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, feb. 2005, pp. 243
– 247.

[13] B. Randell, “System structure for software fault tolerance,” SIGPLAN
Not., vol. 10, no. 6, pp. 437–449, Apr. 1975.

[14] A. Saleh, J. Serrano, and J. Patel, “Reliability of scrubbing recovery-
techniques for memory systems,” Reliability, IEEE Transactions on,
vol. 39, no. 1, pp. 114 –122, apr 1990.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS10, Oct. 2002.

[16] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar proces-
sors,” in ISCA, 1995, pp. 414–425.

[17] J. Suh, M. Manoochehri, M. Annavaram, and M. Dubois, “Soft error
benchmarking of l2 caches with parma,” in SIGMETRICS, 2011, pp.
85–96.

[18] The International Technology Roadmap for Semiconductors, “Edition
2010,” ITRS, Tech. Rep., Dec. 2010. [Online]. Available:
http://www.itrs.net

[19] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah,
and S.-L. Lu, “Trading off cache capacity for reliability to enable low
voltage operation,” in ISCA35, Jun. 2008, pp. 203–214.


